What Are Neuropeptides?

  • J. Peter H. BurbachEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 789)


We know neuropeptides now for over 40 years as chemical signals in the brain. The discovery of neuropeptides is founded on groundbreaking research in physiology, endocrinology, and biochemistry during the last century and has been built on three seminal notions: (1) peptide hormones are chemical signals in the endocrine system; (2) neurosecretion of peptides is a general principle in the nervous system; and (3) the nervous system is responsive to peptide signals. These historical lines have contributed to how neuropeptides can be defined today: “Neuropeptides are small proteinaceous substances produced and released by neurons through the regulated secretory route and acting on neural substrates.” Thus, neuropeptides are the most diverse class of signaling molecules in the brain engaged in many physiological functions. According to this definition almost 70 genes can be distinguished in the mammalian genome, encoding neuropeptide precursors and a multitude of bioactive neuropeptides. In addition, among cytokines, peptide hormones, and growth factors there are several subfamilies of peptides displaying most of the hallmarks of neuropeptides, for example neural chemokines, cerebellins, neurexophilins, and granins. All classical neuropeptides as well as putative neuropeptides from the latter families are presented as a resource.

Key words

Cerebellins Chemokines Granins Adipose peptides Neuropeptide synthesis 


  1. 1.
    Klavdieva, M.M. (1995) The history of neuropeptides 1. Front. Neuroendocrinol. 16, 293–321.PubMedCrossRefGoogle Scholar
  2. 2.
    Klavdieva, M.M. (1996) The history of neuropeptides II. Front. Neuroendocrinol. 17, 126–153.Google Scholar
  3. 3.
    Klavdieva, M.M. (1996) The history of neuropeptides III. Front. Neuroendocrinol. 17, 155–179.PubMedCrossRefGoogle Scholar
  4. 4.
    Klavdieva, M.M. (1996) The history of neuropeptides IV. Front. Neuroendocrinol. 17, 247–280.PubMedCrossRefGoogle Scholar
  5. 5.
    Bayliss, W.M., and Starling, E.H. (1902) The mechanism of pancreatic secretion. J. Physiol. 28, 325–353.PubMedGoogle Scholar
  6. 6.
    Oliver, C., and Shäfer, E.A. (1895) On the physiological actions of extracts of the pituitary body and certain other glandular organs. J. Physiol. 18, 277–279.PubMedGoogle Scholar
  7. 7.
    Von den Velden, R. (1913) Die Nierenwirkung von Hypophysenextrakten beim Menschen. Klin. Wochschr. (Berlin) 50, 2083–2086.Google Scholar
  8. 8.
    Starling, E.H. (1904) The chemical regulation of the secretory process (Croonian Lecture to the Royal Society). Proc. Royal Soc. 73B, 310–322.Google Scholar
  9. 9.
    Starling, E.H. (1905) Croonian Lecture: On the chemical correlation of the functions of the body I. Lancet 2, 339–341.Google Scholar
  10. 10.
    Starling, E.H. (1905) Croonian Lecture: On the chemical correlation of the functions of the body II. Lancet 2, 423–425.Google Scholar
  11. 11.
    Starling, E.H. (1905) Croonian Lecture: On the chemical correlation of the functions of the body III. Lancet 2, 501–503.Google Scholar
  12. 12.
    Starling, E.H. (1905) Croonian Lecture: On the chemical correlation of the functions of the body IV. Lancet 2, 579–583.Google Scholar
  13. 13.
    Von Euler, U.S., and Gaddum J.H. (1931) An unidentified depressor substance in certain tissue extracts. J. Physiol. 72, 74–87.Google Scholar
  14. 14.
    Du Vigneaud, V., Lawler, H.C., and Popenoe, E.A. (1953) Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J. Am. Chem. Soc. 75, 4880–4881.CrossRefGoogle Scholar
  15. 15.
    Wade, N. (1981) The Nobel Duel. Doubleday, Garden City, New York.Google Scholar
  16. 16.
    Tatemoto, K., and Mutt, V. (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285, 417–418.PubMedCrossRefGoogle Scholar
  17. 17.
    Hughes, J., Smith, T.W., Kosterlitz, H.W. et al (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258, 577–580.PubMedCrossRefGoogle Scholar
  18. 18.
    Speidel, C.C. (1919) Gland-cells of internal secretion in the spinal cord of the skaes. Carengie Institute Washington Publications 13, 1–31Google Scholar
  19. 19.
    Scharrer, E., and Scharrer, B. (1937) Über Drüsen-Nervenzellen und neurosekretorische Organe bei Wirbellosen und Wirbeltieren. Biol. Rev. 12, 185–216.CrossRefGoogle Scholar
  20. 20.
    Sterba, G. (1964) Principles of histochemical and biochemical demonstration of neurosecretion (carrier protein of oxytocin) with pseudoisocyanine. Acta Histochem. 17, 268–92.PubMedGoogle Scholar
  21. 21.
    Bargmann W, Scharrer E (1951) The site of origin of the hormones of the posterior pituitary. Am. Sci. 39, 255–259.Google Scholar
  22. 22.
    Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J.M., and Schultzberg, M. (1980) Peptidergic neurones. Nature 284, 515–521.PubMedCrossRefGoogle Scholar
  23. 23.
    Bohus, B., and De Wied, D. (1966) Inhibitory and facilitatory effect of two related peptides on extinction of avoidance behavior. Science 153, 318–320.PubMedCrossRefGoogle Scholar
  24. 24.
    De Wied, D. (1969) Effects of peptide hormones on behavior. In: Ganong, W.F., and Martini, L. (eds), Frontiers in neuroendocrinology. Oxford University Press, New York, pp. 97–140.Google Scholar
  25. 25.
    De Wied, D. (1971) Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature 232, 58–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Brownstein, M.J. (1977) Studies of the distribution of biologically active peptides in the brain. Adv. Exp. Med. Biol. 87, 41–48.PubMedGoogle Scholar
  27. 27.
    Hur, Y.S., Kim, K.D., Paek, S.H. et al (2010) Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes. PLoS One 5, e11973.PubMedCrossRefGoogle Scholar
  28. 28.
    Lonka-Nevalaita, L., Lume, M., Leppanen, S. et al (2010) Characterization of the intracellular localization, processing, and secretion of two glial cell line-derived neurotrophic factor splice isoforms. J. Neurosci. 30, 11403–11413.PubMedCrossRefGoogle Scholar
  29. 29.
    Brownstein, M.J., Russell, J.T., and Gainer, H. (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207, 373–378.PubMedCrossRefGoogle Scholar
  30. 30.
    Tooze, S.A., and Huttner, W.B. (1990) Cell-free protein sorting to the regulated and constitutive secretory pathways. Cell 60, 837–847.PubMedCrossRefGoogle Scholar
  31. 31.
    Lang, T., Wacker, I., Steyer, J. et al (1997) Ca2+−triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18, 857–863.PubMedCrossRefGoogle Scholar
  32. 32.
    Tooze, S.A., Martens, G.J., and Huttner, W.B. (2001) Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol. 11, 116–122.PubMedCrossRefGoogle Scholar
  33. 33.
    Burbach, J.P.H., and Wiegant, V.M. (1990) Gene expression, biosynthesis and processing of proopiomelanocortin peptides and vasopressin. In: De Wied, D. (ed), Neuropeptides, basics and perspectives. Elsevier, Amsterdam, pp 45–103.Google Scholar
  34. 34.
    , S.G., Jonas, V., Rosenfeld, M.G. et al (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244.Google Scholar
  35. 35.
    Nawa, H., Kotani, H., Nakanishi, S. (1984) Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312, 729–734.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhao, E., Zhang, D., Basak, A. et al (2009) New insights into granin-derived peptides: evolution and endocrine roles. Gen. Comp. Endocrinol. 164, 161–174.PubMedCrossRefGoogle Scholar
  37. 37.
    Braks, J.A., and Martens, G.J. (1994) 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78, 263–273.PubMedCrossRefGoogle Scholar
  38. 38.
    Ubogu, E.E., Cossoy, M.B., and Ransohoff, R.M. (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol. Sci. 27, 48–55.PubMedCrossRefGoogle Scholar
  39. 39.
    de Haas, A.H., van Weering, H.R., de Jong, E.K. et al (2007) Neuronal chemokines:versatile messengers in central nervous system cell interaction. Mol Neurobiol. 36, 137–151.PubMedCrossRefGoogle Scholar
  40. 40.
    Miller, R.J., Rostene, W., Apartis, E. et al (2008) Chemokine action in the nervous system. J. Neurosci. 28, 11792–11795.PubMedCrossRefGoogle Scholar
  41. 41.
    Huang, E.J., and Reichardt, L.F. (2001) Neurotrophins:roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736.PubMedCrossRefGoogle Scholar
  42. 42.
    Thomas, K., and Davies, A. (2005) Neurotrophins:a ticket to ride for BDNF. Curr. Biol. 15, R262-R264.PubMedCrossRefGoogle Scholar
  43. 43.
    Salio, C., Averill, S., Priestley, J.V. et al (2007) Costorage of BDNF and neuropeptides within individual dense-core vesicles in central and peripheral neurons. Dev. Neurobiol. 67, 326–338.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang, J., Siao, C.J., Nagappan, G. et al (2009) Neuronal release of pro-BDNF. Nat. Neurosci. 12, 113–115.PubMedCrossRefGoogle Scholar
  45. 45.
    Teng, H.K., Teng, K.K., Lee, R. et al (2005) Pro-BDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 25, 5455–5463.PubMedCrossRefGoogle Scholar
  46. 46.
    Dicou, E, (2007) Peptides other than the neurotrophins that can be cleaved from proneurotrophins:a neglected story. Arch. Physiol. Biochem. 113, 228–233.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and PharmacologyUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations