Megakaryopoiesis and Thrombopoiesis: An Update on Cytokines and Lineage Surface Markers

  • Ming Yu
  • Alan B. CantorEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 788)


Megakaryopoiesis is the process by which mature megakaryocytes (MKs) develop from hematopoietic stem cells (HSCs). The biological function of MKs is to produce platelets, which play critical roles in hemostasis and contribute to angiogenesis and wound healing. The generation of platelets from MKs is termed thrombopoiesis. The cytokine thrombopoietin (TPO) is the major regulator of megakaryopoiesis and thrombopoiesis. It binds to its surface receptor, c-Mpl, and acts through multiple downstream signaling pathways, including the PI-3 kinase-Akt, MAPK, and ERK1/ERK2 pathways. However, non-TPO pathways, such as the SDF1/CXCR4 axis, Notch signaling, src family kinases, integrin signaling, and Platelet Factor 4/low-density lipoprotein receptor-related protein 1, have more recently been recognized to influence megakaryopoiesis and thrombopoiesis in vitro and in vivo. In this chapter, we review megakaryopoiesis and thrombopoiesis with emphasis on cell surface marker changes during their differentiation from HSCs, and the classical cytokines that affect these developmental stages. We also discuss non-TPO regulators and their effects on in vitro culture systems.

Key words

Megakaryopoiesis Thrombopoietin Hematopoietic stem cells Thrombopoiesis c-Mpl Megakaryocyte Megakaryocyte progenitor Cytokine Surface marker CD41 


  1. 1.
    Sun, L., Hwang, W. Y., and Aw, S. E. (2006) Biological characteristics of megakaryocytes: specific lineage commitment and associated disorders. Int J Biochem Cell Biol 38, 1821–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Chang, Y., Bluteau, D., Debili, N., and Vainchenker, W. (2007) From hematopoietic stem cells to platelets. J Thromb Haemost 5 Suppl 1, 318–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Chao, M. P., Seita, J., and Weissman, I. L. (2008) Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb Symp Quant Biol 73, 439–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Orkin, S. H., and Zon, L. I. (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhardwaj, G., Murdoch, B., Wu, D., Baker, D. P., Williams, K. P., Chadwick, K., Ling, L. E., Karanu, F. N., and Bhatia, M. (2001) Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2, 172–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Manz, M. G., Miyamoto, T., Akashi, K., and Weissman, I. L. (2002) Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA 99, 11872–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Cesselli, D., Beltrami, A. P., Rigo, S., Bergamin, N., D’Aurizio, F., Verardo, R., Piazza, S., Klaric, E., Fanin, R., Toffoletto, B., Marzinotto, S., Mariuzzi, L., Finato, N., Pandolfi, M., Leri, A., Schneider, C., Beltrami, C. A., and Anversa, P. (2009) Multipotent progenitor cells are present in human peripheral blood. Circ Res 104, 1225–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Akashi, K., Traver, D., Miyamoto, T., and Weissman, I. L. (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Adolfsson, J., Mansson, R., Buza-Vidas, N., Hultquist, A., Liuba, K., Jensen, C. T., Bryder, D., Yang, L., Borge, O. J., Thoren, L. A., Anderson, K., Sitnicka, E., Sasaki, Y., Sigvardsson, M., and Jacobsen, S. E. (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306.PubMedCrossRefGoogle Scholar
  10. 10.
    Forsberg, E. C., Serwold, T., Kogan, S., Weissman, I. L., and Passegue, E. (2006) New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell 126, 415–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Pronk, C. J., Rossi, D. J., Mansson, R., Attema, J. L., Norddahl, G. L., Chan, C. K., Sigvardsson, M., Weissman, I. L., and Bryder, D. (2007) Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Carver-Moore, K., Broxmeyer, H. E., Luoh, S. M., Cooper, S., Peng, J., Burstein, S. A., Moore, M. W., and de Sauvage, F. J. (1996) Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice. Blood 88, 803–8.PubMedGoogle Scholar
  13. 13.
    Starck, J., Cohet, N., Gonnet, C., Sarrazin, S., Doubeikovskaia, Z., Doubeikovski, A., Verger, A., Duterque-Coquillaud, M., and Morle, F. (2003) Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 23, 1390–402.PubMedCrossRefGoogle Scholar
  14. 14.
    Frontelo, P., Manwani, D., Galdass, M., Karsunky, H., Lohmann, F., Gallagher, P. G., and Bieker, J. J. (2007) Novel role for EKLF in megakaryocyte lineage commitment. Blood 110, 3871–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Nakorn, T. N., Miyamoto, T., and Weissman, I. L. (2003) Characterization of mouse clonogenic megakaryocyte progenitors. Proc Natl Acad Sci USA 100, 205–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Tomer, A. (2004) Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2 N and 4 N) megakaryocytes. Blood 104, 2722–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Mikkola, H. K., Fujiwara, Y., Schlaeger, T. M., Traver, D., and Orkin, S. H. (2003) Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood 101, 508–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Mitjavila-Garcia, M. T., Cailleret, M., Godin, I., Nogueira, M. M., Cohen-Solal, K., Schiavon, V., Lecluse, Y., Le Pesteur, F., Lagrue, A. H., and Vainchenker, W. (2002) Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 129, 2003–13.PubMedGoogle Scholar
  19. 19.
    Berlanga, O., Emambokus, N., and Frampton, J. (2005) GPIIb (CD41) integrin is expressed on mast cells and influences their adhesion properties. Exp Hematol 33, 403–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Oki, T., Kitaura, J., Eto, K., Lu, Y., Maeda-Yamamoto, M., Inagaki, N., Nagai, H., Yamanishi, Y., Nakajima, H., Kumagai, H., and Kitamura, T. (2006) Integrin alphaIIbbeta3 induces the adhesion and activation of mast cells through interaction with fibrinogen. J Immunol 176, 52–60.PubMedGoogle Scholar
  21. 21.
    Bartley, T. D., Bogenberger, J., Hunt, P., Li, Y. S., Lu, H. S., Martin, F., Chang, M. S., Samal, B., Nichol, J. L., Swift, S., and et al. (1994) Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell 77, 1117–24.PubMedCrossRefGoogle Scholar
  22. 22.
    de Sauvage, F. J., Hass, P. E., Spencer, S. D., Malloy, B. E., Gurney, A. L., Spencer, S. A., Darbonne, W. C., Henzel, W. J., Wong, S. C., Kuang, W. J., and et al. (1994) Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369, 533–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Kaushansky, K., Lok, S., Holly, R. D., Broudy, V. C., Lin, N., Bailey, M. C., Forstrom, J. W., Buddle, M. M., Oort, P. J., Hagen, F. S., and et al. (1994) Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 369, 568–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Kuter, D. J., Beeler, D. L., and Rosenberg, R. D. (1994) The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production. Proc Natl Acad Sci USA 91, 11104–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Lok, S., Kaushansky, K., Holly, R. D., Kuijper, J. L., Lofton-Day, C. E., Oort, P. J., Grant, F. J., Heipel, M. D., Burkhead, S. K., Kramer, J. M., and et al. (1994) Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369, 565–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Wendling, F., Maraskovsky, E., Debili, N., Florindo, C., Teepe, M., Titeux, M., Methia, N., Breton-Gorius, J., Cosman, D., and Vainchenker, W. (1994) cMpl ligand is a humoral regulator of megakaryocytopoiesis. Nature 369, 571–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Sohma, Y., Akahori, H., Seki, N., Hori, T., Ogami, K., Kato, T., Shimada, Y., Kawamura, K., and Miyazaki, H. (1994) Molecular cloning and chromosomal localization of the human thrombopoietin gene. FEBS Lett 353, 57–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaushansky, K. (2005) The molecular mechanisms that control thrombopoiesis. J Clin Invest 115, 3339–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Bacon, C. M., Tortolani, P. J., Shimosaka, A., Rees, R. C., Longo, D. L., and O’Shea, J. J. (1995) Thrombopoietin (TPO) induces tyrosine phosphorylation and activation of STAT5 and STAT3. FEBS Lett 370, 63–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Tong, W., and Lodish, H. F. (2004) Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 200, 569–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Metcalf, D., Di Rago, L., and Mifsud, S. (2002) Synergistic and inhibitory interactions in the in vitro control of murine megakaryocyte colony formation. Stem Cells 20, 552–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Drayer, A. L., Boer, A. K., Los, E. L., Esselink, M. T., and Vellenga, E. (2005) Stem cell factor synergistically enhances thrombopoietin-induced STAT5 signaling in megakaryocyte progenitors through JAK2 and Src kinase. Stem Cells 23, 240–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Ahmed, N., Khokher, M. A., and Hassan, H. T. (1999) Cytokine-induced expansion of human CD34+ stem/progenitor and CD34  +  CD41+ early megakaryocytic marrow cells cultured on normal osteoblasts. Stem Cells 17, 92–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Lazzari, L., Henschler, R., Lecchi, L., Rebulla, P., Mertelsmann, R., and Sirchia, G. (2000) Interleukin-6 and interleukin-11 act synergistically with thrombopoietin and stem cell factor to modulate ex vivo expansion of human CD41+ and CD61+ megakaryocytic cells. Haematologica 85, 25–30.PubMedGoogle Scholar
  35. 35.
    Alexander, W. S., Roberts, A. W., Nicola, N. A., Li, R., and Metcalf, D. (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87, 2162–70.PubMedGoogle Scholar
  36. 36.
    Gurney, A. L., Carver-Moore, K., de Sauvage, F. J., and Moore, M. W. (1994) Thrombocytopenia in c-mpl-deficient mice. Science 265, 1445–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Bunding, S., Widmer R, Lipari, T, Rangell, L, Steinmetz, H, Carver-Moore, K, Moore, MW, Keller, GA, de Sauvage, FJ. (1997) Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood 90, 3423–3429.Google Scholar
  38. 38.
    Wang, J. F., Liu, Z. Y., and Groopman, J. E. (1998) The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood 92, 756–64.PubMedGoogle Scholar
  39. 39.
    Riviere, C., Subra, F., Cohen-Solal, K., Cordette-Lagarde, V., Letestu, R., Auclair, C., Vainchenker, W., and Louache, F. (1999) Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood 93, 1511–23.PubMedGoogle Scholar
  40. 40.
    Perez, L. E., Desponts, C., Parquet, N., and Kerr, W. G. (2008) SH2-inositol phosphatase 1 negatively influences early megakaryocyte progenitors. PLoS One 3, e3565.PubMedCrossRefGoogle Scholar
  41. 41.
    Avecilla, S. T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., Jin, D. K., Dias, S., Zhang, F., Hartman, T. E., Hackett, N. R., Crystal, R. G., Witte, L., Hicklin, D. J., Bohlen, P., Eaton, D., Lyden, D., de Sauvage, F., and Rafii, S. (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10, 64–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Salim, J. P., Goette, N. P., Lev, P. R., Chazarreta, C. D., Heller, P. G., Alvarez, C., Molinas, F. C., and Marta, R. F. (2009) Dysregulation of stromal derived factor 1/CXCR4 axis in the megakaryocytic lineage in essential thrombocythemia. Br J Haematol 144, 69–77.PubMedCrossRefGoogle Scholar
  43. 43.
    Sakamoto, H., Ochiya, T., Sato, Y., Tsukamoto, M., Konishi, H., Saito, I., Sugimura, T., and Terada, M. (1994) Adenovirus-mediated transfer of the HST-1 (FGF4) gene induces increased levels of platelet count in vivo. Proc Natl Acad Sci USA 91, 12368–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Mercher, T., Cornejo, M. G., Sears, C., Kindler, T., Moore, S. A., Maillard, I., Pear, W. S., Aster, J. C., and Gilliland, D. G. (2008) Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell 3, 314–26.PubMedCrossRefGoogle Scholar
  45. 45.
    Yeatman, T. J. (2004) A renaissance for SRC. Nat Rev Cancer 4, 470–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Lannutti, B. J., Shim, M. H., Blake, N., Reems, J. A., and Drachman, J. G. (2003) Identification and activation of Src family kinases in primary megakaryocytes. Exp Hematol 31, 1268–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Lannutti, B. J., Blake, N., Gandhi, M. J., Reems, J. A., and Drachman, J. G. (2005) Induction of polyploidization in leukemic cell lines and primary bone marrow by Src kinase inhibitor SU6656. Blood 105, 3875–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Lannutti, B. J., and Drachman, J. G. (2004) Lyn tyrosine kinase regulates thrombopoietin-induced proliferation of hematopoietic cell lines and primary megakaryocytic progenitors. Blood 103, 3736–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Lannutti, B. J., Minear, J., Blake, N., and Drachman, J. G. (2006) Increased megakaryocytopoiesis in Lyn-deficient mice. Oncogene 25, 3316–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Sullenbarger, B., Bahng, J. H., Gruner, R., Kotov, N., and Lasky, L. C. (2009) Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. Exp Hematol 37, 101–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Hitchcock, I. S., Fox, N. E., Prevost, N., Sear, K., Shattil, S. J., and Kaushansky, K. (2008) Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function: studies using a megakaryocyte lineage specific FAK knockout. Blood 111, 596–604.PubMedCrossRefGoogle Scholar
  52. 52.
    Fox, N. E., and Kaushansky, K. (2005) Engagement of integrin alpha4beta1 enhances thrombopoietin-induced megakaryopoiesis. Exp Hematol 33, 94–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Lambert, M. P., Wang, Y., Bdeir, K. H., Nguyen, Y., Kowalska, M. A., and Poncz, M. (2009) Platelet factor 4 regulates megakaryopoiesis through low-density lipoprotein receptor-related protein 1 (LRP1) on megakaryocytes. Blood 114, 2290–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Yang, M., Li, K., Ng, M. H., Yuen, P. M., Fok, T. F., Li, C. K., Hogg, P. J., and Chong, B. H. (2003) Thrombospondin-1 inhibits in vitro megakaryocytopoiesis via CD36. Thromb Res 109, 47–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Huang, H., and Cantor, A. B. (2009) Common features of megakaryocytes and hematopoietic stem cells: what’s the connection? J Cell Biochem 107, 857–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Satoh, Y., Matsumura, I., Tanaka, H., Ezoe, S., Fukushima, K., Tokunaga, M., Yasumi, M., Shibayama, H., Mizuki, M., Era, T., Okuda, T., and Kanakura, Y. (2008) AML1/RUNX1 works as a negative regulator of c-Mpl in hematopoietic stem cells. J Biol Chem 283, 30045–56.PubMedCrossRefGoogle Scholar
  57. 57.
    Solar, G. P., Kerr, W. G., Zeigler, F. C., Hess, D., Donahue, C., de Sauvage, F. J., and Eaton, D. L. (1998) Role of c-mpl in early hematopoiesis. Blood 92, 4–10.PubMedGoogle Scholar
  58. 58.
    van den Oudenrijn, S., Bruin, M., Folman, C. C., Peters, M., Faulkner, L. B., de Haas, M., and von dem Borne, A. E. (2000) Mutations in the thrombopoietin receptor, Mpl, in children with congenital amegakaryocytic thrombocytopenia. Br J Haematol 110, 441–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Abkowitz, J. L., and Chen, J. (2007) Studies of c-Mpl function distinguish the replication of hematopoietic stem cells from the expansion of differentiating clones. Blood 109, 5186–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., and Littman, D. R. (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Mohle, R., Bautz, F., Rafii, S., Moore, M. A., Brugger, W., and Kanz, L. (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91, 4523–30.PubMedGoogle Scholar
  62. 62.
    Huang, X., Sakamoto, H., and Ogawa, M. (2009) Thrombopoietin controls proliferation of embryonic multipotent hematopoietic progenitors. Genes Cells 14, 851–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Yamada, E. (1957) The fine structure of the megakaryocyte in the mouse spleen. Acta Anat (Basel) 29, 267–90.CrossRefGoogle Scholar
  64. 64.
    Behnke, O. (1968) An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res 24, 412–33.Google Scholar
  65. 65.
    Mahaut-Smith, M. P., Thomas, D., Higham, A. B., Usher-Smith, J. A., Hussain, J. F., Martinez-Pinna, J., Skepper, J. N., and Mason, M. J. (2003) Properties of the demarcation membrane system in living rat megakaryocytes. Biophys J 84, 2646–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Italiano, J. E., Jr., Lecine, P., Shivdasani, R. A., and Hartwig, J. H. (1999) Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 147, 1299–312.PubMedCrossRefGoogle Scholar
  67. 67.
    Radley, J. M., and Haller, C. J. (1982) The demarcation membrane system of the megakaryocyte: a misnomer? Blood 60, 213–9.PubMedGoogle Scholar
  68. 68.
    Patel, S. R., Richardson, J. L., Schulze, H., Kahle, E., Galjart, N., Drabek, K., Shivdasani, R. A., Hartwig, J. H., and Italiano, J. E., Jr. (2005) Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood 106, 4076–85.PubMedCrossRefGoogle Scholar
  69. 69.
    Schulze, H., Korpal, M., Hurov, J., Kim, S. W., Zhang, J., Cantley, L. C., Graf, T., and Shivdasani, R. A. (2006) Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood 107, 3868–75.PubMedCrossRefGoogle Scholar
  70. 70.
    Cramer, E. M., Norol, F., Guichard, J., Breton-Gorius, J., Vainchenker, W., Masse, J. M., and Debili, N. (1997) Ultrastructure of platelet formation by human megakaryocytes cultured with the Mpl ligand. Blood 89, 2336–46.PubMedGoogle Scholar
  71. 71.
    Junt, T., Schulze, H., Chen, Z., Massberg, S., Goerge, T., Krueger, A., Wagner, D. D., Graf, T., Italiano, J. E., Jr., Shivdasani, R. A., and von Andrian, U. H. (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317, 1767–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Pastos, K. M., Slayton, W. B., Rimsza, L. M., Young, L., and Sola-Visner, M. C. (2006) Differential effects of recombinant thrombopoietin and bone marrow stromal-conditioned media on neonatal versus adult megakaryocytes. Blood 108, 3360–2.PubMedCrossRefGoogle Scholar
  73. 73.
    Hu, Z., Slayton, W. B., Rimsza, L. M., Bailey, M., Sallmon, H., and Sola-Visner, M. C. Differences between newborn and adult mice in their response to immune thrombocytopenia. Neonatology 98, 100–8.Google Scholar
  74. 74.
    Cortin, V., Garnier, A., Pineault, N., Lemieux, R., Boyer, L., and Proulx, C. (2005) Efficient in vitro megakaryocyte maturation using cytokine cocktails optimized by statistical experimental design. Exp Hematol 33, 1182–91.PubMedCrossRefGoogle Scholar
  75. 75.
    Fujimoto, T. T., Kohata, S., Suzuki, H., Miyazaki, H., and Fujimura, K. (2003) Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood 102, 4044–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Gaur, M., Kamata, T., Wang, S., Moran, B., Shattil, S. J., and Leavitt, A. D. (2006) Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost 4, 436–42.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratories of Biochemistry and Molecular BiologyThe rockefeller University New yorkNew yorkUSA
  2. 2.Division of Hematology-OncologyChildren’s Hospital Boston and Dana Farber Cancer Institute, Harvard Medical SchoolBostonUSA

Personalised recommendations