Characterization of Megakaryocyte Development in the Native Bone Marrow Environment

  • Anita Eckly
  • Catherine Strassel
  • Jean-Pierre Cazenave
  • François Lanza
  • Catherine Léon
  • Christian GachetEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 788)


Differentiation and maturation of megakaryocytes occur in close association with cellular and extracellular components in the bone marrow. Thus, direct examination of these processes in the native environment provides important information regarding the development of megakaryocytes. In this chapter, we present methods applied to mouse bone marrow to (1) examine the ultrastructure of megakaryocytes and their state of maturation in situ in fixed bone marrow sections and (2) study the dynamics of proplatelet formation by real-time observation of fresh bone marrow explants where megakaryocytes have matured in their natural physiological context. Combining these two approaches allows detailed investigation of in situ megakaryocyte differentiation, including proplatelet formation, which is the final maturation step before platelet release.

Key words

Bone marrow Electron microscopy Explants In situ megakaryocyte ultrastructure Proplatelet formation 



The authors wish to thank Patricia Laeuffer, Fabienne Proamer, Monique Freund, Catherine Ziessel, and Jean-Yves Rinckel for technical assistance. This work was supported by INSERM, EFS-Alsace, ARMESA, and ANR (Agence Nationale pour la Recherche, Grant N ANR-07-MRAR-016-01).


  1. 1.
    Kaushansky, K., 2005, Thrombopoietin and the hematopoietic stem cell. Ann N Y Acad Sci, 1044: p. 139–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Shivdasani, R.A., and H. Schuze., 2005, Culture, expansion, and differentiation of murine megakaryocytes. Curr Protoc Immunol, Chapter 22: p. Unit 22F 6.Google Scholar
  3. 3.
    Battinelli, E.M., et al., 2007, Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis. Curr Opin Hematol, 14(5): p. 419–26.PubMedCrossRefGoogle Scholar
  4. 4.
    Liu, J., et al., 2008, Genetic manipulation of megakaryocytes to study platelet function. Curr Top Dev Biol, 80: p. 311–35.PubMedCrossRefGoogle Scholar
  5. 5.
    Travlos, G.S., 2006, Normal structure, function, and histology of the bone marrow. Toxicol Pathol, 34(5): p. 548–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Kacena, M.A., et al., 2006, A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells. Bone, 39(5): p. 978–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Debili, N., et al., 1993, Effects of the recombinant hematopoietic growth factors interleukin-3, interleukin-6, stem cell factor, and leukemia inhibitory factor on the megakaryocytic differentiation of CD34+ cells. Blood, 82(1): p. 84–95.PubMedGoogle Scholar
  8. 8.
    Avraham, H., et al., 1992, Effects of the stem cell factor, c-kit ligand, on human megakaryocytic cells. Blood, 79(2): p. 365–71.PubMedGoogle Scholar
  9. 9.
    Avecilla, S.T., et al., 2004, Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med, 10(1): p. 64–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Leven, R.M., and F. Tablin., 1992, Extracellular matrix stimulation of guinea pig megakaryocyte proplatelet formation in vitro is mediated through the vitronectin receptor. Exp Hematol, 20(11): p. 1316–22.PubMedGoogle Scholar
  11. 11.
    Sabri, S., et al., 2004, Differential regulation of actin stress fiber assembly and proplatelet formation by alpha2beta1 integrin and GPVI in human megakaryocytes. Blood, 104(10): p. 3117–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Larson, M.K., and S.P. Watson., 2006, Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood, 108(5): p. 1509–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Behnke, O., 1968, An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. J Ultrastruct Res, 24(5): p. 412–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Hunter, E., 1993, Practical Electron Microscopy. A Beginner’s Illustrated Guide, ed. C.U. Press. Vol. 2: Hunter E, Maloney P and Bendayan M. 1–170.Google Scholar
  15. 15.
    Zucker-Franklin, D., 1988, Megakaryocytes and platelets, ed. A.o.B.C.F.a. Pathology. Vol. 2: Zucker-Franklin D, Greaves MF, Grossi CE, Marmont AM, eds. 621–93.Google Scholar
  16. 16.
    Harker, L.A., and C.A. Finch., 1969, Thrombokinetics in man. J Clin Invest, 48(6): p. 963–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Thiery, J.P., and M. Bessis., 1956, (Mechanism of platelet genesis; in vitro study by cinemicrophotography.). Rev Hematol, 11(2): p. 162–74.PubMedGoogle Scholar
  18. 18.
    Thiery, J.P., and M. Bessis., 1956, (Genesis of blood platelets from the megakaryocytes in ­living cells.). C R Hebd Seances Acad Sci, 242(2): p. 290–2.PubMedGoogle Scholar
  19. 19.
    Italiano, J.E, Jr., et al., 1999, Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol, 147(6): p. 1299–312.PubMedCrossRefGoogle Scholar
  20. 20.
    Strassel, C., et al., 2009, Intrinsic impaired proplatelet formation and microtubule coil assembly of megakaryocytes in a mouse model of Bernard-Soulier syndrome. Haematologica, 94(6): p. 800–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Anita Eckly
    • 1
  • Catherine Strassel
    • 1
  • Jean-Pierre Cazenave
    • 1
  • François Lanza
    • 1
  • Catherine Léon
    • 1
  • Christian Gachet
    • 1
    Email author
  1. 1.UMR_S949 Inserm-Université de StrasbourgStrasbourgFrance

Personalised recommendations