Molecular Chaperones pp 33-44

Part of the Methods in Molecular Biology book series (MIMB, volume 787)

Hsp90 and Client Protein Maturation



Heat-shock protein 90 (Hsp90) is a molecular chaperone that assists in the maturation of a limited set of substrate proteins that are collectively referred to as clients. The majority of identified Hsp90 clients are involved in signal transduction, including many steroid hormone receptors and kinases. A handful of Hsp90 clients can be classified as nonsignal transduction proteins, including telomerase, cystic fibrosis transmembrane conductance regulator, and antigenic peptides destined for major histocompatibility complex. Because Hsp90 clients are causative agents in cancer and cystic fibrosis, research on Hsp90 has intensified in recent years. We review the historical path of Hsp90 research within each class of client (kinase, hormone receptor, and nonsignal transduction clients) and highlight current areas of active investigation.

Key words

Hsp90 Chaperone ATPase Kinase Steroid hormone receptor Signal transduction Telomerase CFTR Antigen presentation 


  1. 1.
    Ritossa, F. (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18, 571–573.CrossRefGoogle Scholar
  2. 2.
    McKenzie, S. L., Henikoff, S., and Meselson, M. (1975) Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proc Natl Acad Sci U S A 72, 1117–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Lindquist, S. (1986) The heat-shock response. Annu Rev Biochem 55, 1151–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Borkovich, K. A., Farrelly, F. W., Finkelstein, D. B., Taulien, J., and Lindquist, S. (1989) hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9, 3919–30.PubMedGoogle Scholar
  5. 5.
    Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O’Shea, E. K., and Weissman, J. S. (2003) Global analysis of protein expression in yeast. Nature 425, 737–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., and O’Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Bardwell, J. C., and Craig, E. A. (1988) Ancient heat shock gene is dispensable. J Bacteriol 170, 2977–83.PubMedGoogle Scholar
  8. 8.
    Picard, D., Khursheed, B., Garabedian, M. J., Fortin, M. G., Lindquist, S., and Yamamoto, K. R. (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348, 166–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhao, R., Davey, M., Hsu, Y. C., Kaplanek, P., Tong, A., Parsons, A. B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A., and Houry, W. A. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–27.PubMedCrossRefGoogle Scholar
  10. 10.
    Panaretou, B., Prodromou, C., Roe, S. M., O’Brien, R., Ladbury, J. E., Piper, P. W., and Pearl, L. H. (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. Embo J 17, 4829–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Meyer, P., Prodromou, C., Hu, B., Vaughan, C., Roe, S. M., Panaretou, B., Piper, P. W., and Pearl, L. H. (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11, 647–58.PubMedCrossRefGoogle Scholar
  12. 12.
    Minami, Y., Kimura, Y., Kawasaki, H., Suzuki, K., and Yahara, I. (1994) The carboxy-terminal region of mammalian HSP90 is required for its dimerization and function in vivo. Mol Cell Biol 14, 1459–64.PubMedGoogle Scholar
  13. 13.
    Wayne, N., and Bolon, D. N. (2007) Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers. J Biol Chem 282, 35386–95.PubMedCrossRefGoogle Scholar
  14. 14.
    Ali, M. M., Roe, S. M., Vaughan, C. K., Meyer, P., Panaretou, B., Piper, P. W., Prodromou, C., and Pearl, L. H. (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Shiau, A. K., Harris, S. F., Southworth, D. R., and Agard, D. A. (2006) Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Vaughan, C. K., Gohlke, U., Sobott, F., Good, V. M., Ali, M. M., Prodromou, C., Robinson, C. V., Saibil, H. R., and Pearl, L. H. (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23, 697–707.PubMedCrossRefGoogle Scholar
  17. 17.
    Hessling, M., Richter, K., and Buchner, J. (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16, 287–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Mickler, M., Hessling, M., Ratzke, C., Buchner, J., and Hugel, T. (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 16, 281–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Southworth, D. R., and Agard, D. A. (2008) Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle. Mol Cell 32, 631–40.PubMedCrossRefGoogle Scholar
  20. 20.
    McLaughlin, S. H., Sobott, F., Yao, Z. P., Zhang, W., Nielsen, P. R., Grossmann, J. G., Laue, E. D., Robinson, C. V., and Jackson, S. E. (2006) The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 356, 746–58.PubMedCrossRefGoogle Scholar
  21. 21.
    Panaretou, B., Siligardi, G., Meyer, P., Maloney, A., Sullivan, J. K., Singh, S., Millson, S. H., Clarke, P. A., Naaby-Hansen, S., Stein, R., Cramer, R., Mollapour, M., Workman, P., Piper, P. W., Pearl, L. H., and Prodromou, C. (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 10, 1307–18.PubMedCrossRefGoogle Scholar
  22. 22.
    Roe, S. M., Ali, M. M., Meyer, P., Vaughan, C. K., Panaretou, B., Piper, P. W., Prodromou, C., and Pearl, L. H. (2004) The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116, 87–98.PubMedCrossRefGoogle Scholar
  23. 23.
    Whitesell, L., Mimnaugh, E. G., De Costa, B., Myers, C. E., and Neckers, L. M. (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91, 8324–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Whitesell, L., and Lindquist, S. L. (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5, 761–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Joab, I., Radanyi, C., Renoir, M., Buchou, T., Catelli, M. G., Binart, N., Mester, J., and Baulieu, E. E. (1984) Common non-hormone binding component in non-transformed chick oviduct receptors of four steroid hormones. Nature 308, 850–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Sanchez, E. R., Toft, D. O., Schlesinger, M. J., and Pratt, W. B. (1985) Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat shock protein. J Biol Chem 260, 12398–401.PubMedGoogle Scholar
  27. 27.
    Dalman, F. C., Koenig, R. J., Perdew, G. H., Massa, E., and Pratt, W. B. (1990) In contrast to the glucocorticoid receptor, the thyroid hormone receptor is translated in the DNA binding state and is not associated with hsp90. J Biol Chem 265, 3615–8.PubMedGoogle Scholar
  28. 28.
    Dalman, F. C., Sturzenbecker, L. J., Levin, A. A., Lucas, D. A., Perdew, G. H., Petkovitch, M., Chambon, P., Grippo, J. F., and Pratt, W. B. (1991) Retinoic acid receptor belongs to a subclass of nuclear receptors that do not form “docking” complexes with hsp90. Biochemistry 30, 5605–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Redeuilh, G., Moncharmont, B., Secco, C., and Baulieu, E. E. (1987) Subunit composition of the molybdate-stabilized “8-9 S” nontransformed estradiol receptor purified from calf uterus. J Biol Chem 262, 6969–75.PubMedGoogle Scholar
  30. 30.
    Veldscholte, J., Berrevoets, C. A., Zegers, N. D., van der Kwast, T. H., Grootegoed, J. A., and Mulder, E. (1992) Hormone-induced dissociation of the androgen receptor-heat-shock protein complex: use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry 31, 7422–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Denis, M., Wikstrom, A. C., and Gustafsson, J. A. (1987) The molybdate-stabilized nonactivated glucocorticoid receptor contains a dimer of Mr 90,000 non-hormone-binding protein. J Biol Chem 262, 11803–6.PubMedGoogle Scholar
  32. 32.
    Smith, D. F., Schowalter, D. B., Kost, S. L., and Toft, D. O. (1990) Reconstitution of progesterone receptor with heat shock proteins. Mol Endocrinol 4, 1704–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith, D. F., and Toft, D. O. (1992) Composition, assembly and activation of the avian progesterone receptor. J Steroid Biochem Mol Biol 41, 201–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Kosano, H., Stensgard, B., Charlesworth, M. C., McMahon, N., and Toft, D. (1998) The assembly of progesterone receptor-hsp90 complexes using purified proteins. J Biol Chem 273, 32973–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Wagner, R. L., Apriletti, J. W., McGrath, M. E., West, B. L., Baxter, J. D., and Fletterick, R. J. (1995) A structural role for hormone in the thyroid hormone receptor. Nature 378, 690–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Williams, S. P., and Sigler, P. B. (1998) Atomic structure of progesterone complexed with its receptor. Nature 393, 392–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Stancato, L. F., Silverstein, A. M., Gitler, C., Groner, B., and Pratt, W. B. (1996) Use of the thiol-specific derivatizing agent N-iodoacetyl-3-[125I]iodotyrosine to demonstrate conformational differences between the unbound and hsp90-bound glucocorticoid receptor hormone binding domain. J Biol Chem 271, 8831–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Pratt, W. B., and Toft, D. O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228, 111–33.Google Scholar
  39. 39.
    Grenert, J. P., Johnson, B. D., and Toft, D. O. (1999) The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J Biol Chem 274, 17525–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Brugge, J. S., Erikson, E., and Erikson, R. L. (1981) The specific interaction of the Rous sarcoma virus transforming protein, pp60src, with two cellular proteins. Cell 25, 363–72.PubMedCrossRefGoogle Scholar
  41. 41.
    An, W. G., Schulte, T. W., and Neckers, L. M. (2000) The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 11, 355–60.PubMedGoogle Scholar
  42. 42.
    Reed, S. I. (1980) The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95, 561–77.PubMedGoogle Scholar
  43. 43.
    Dey, B., Lightbody, J. J., and Boschelli, F. (1996) CDC37 is required for p60v-src activity in yeast. Mol Biol Cell 7, 1405–17.PubMedGoogle Scholar
  44. 44.
    Xu, Y., and Lindquist, S. (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A 90, 7074–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Cutforth, T., and Rubin, G. M. (1994) Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77, 1027–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Dai, K., Kobayashi, R., and Beach, D. (1996) Physical interaction of mammalian CDC37 with CDK4. J Biol Chem 271, 22030–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Siligardi, G., Panaretou, B., Meyer, P., Singh, S., Woolfson, D. N., Piper, P. W., Pearl, L. H., and Prodromou, C. (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277, 20151–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Citri, A., Harari, D., Shohat, G., Ramakrishnan, P., Gan, J., Lavi, S., Eisenstein, M., Kimchi, A., Wallach, D., Pietrokovski, S., and Yarden, Y. (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281, 14361–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Mandal, A. K., Lee, P., Chen, J. A., Nillegoda, N., Heller, A., DiStasio, S., Oen, H., Victor, J., Nair, D. M., Brodsky, J. L., and Caplan, A. J. (2007) Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation. J Cell Biol 176, 319–28.PubMedCrossRefGoogle Scholar
  50. 50.
    Arlander, S. J., Felts, S. J., Wagner, J. M., Stensgard, B., Toft, D. O., and Karnitz, L. M. (2006) Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem 281, 2989–98.PubMedCrossRefGoogle Scholar
  51. 51.
    Dittmar, K. D., Banach, M., Galigniana, M. D., and Pratt, W. B. (1998) The role of DnaJ-like proteins in glucocorticoid receptor.hsp90 heterocomplex assembly by the reconstituted hsp90.p60.hsp70 foldosome complex. J Biol Chem 273, 7358–66.PubMedCrossRefGoogle Scholar
  52. 52.
    Holt, S. E., Aisner, D. L., Baur, J., Tesmer, V. M., Dy, M., Ouellette, M., Trager, J. B., Morin, G. B., Toft, D. O., Shay, J. W., Wright, W. E., and White, M. A. (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13, 817–26.PubMedCrossRefGoogle Scholar
  53. 53.
    DeZwaan, D. C., Toogun, O. A., Echtenkamp, F. J., and Freeman, B. C. (2009) The Hsp82 molecular chaperone promotes a switch between unextendable and extendable telomere states. Nat Struct Mol Biol 16, 711–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Grandin, N., and Charbonneau, M. (2001) Hsp90 levels affect telomere length in yeast. Mol Genet Genomics 265, 126–34.PubMedCrossRefGoogle Scholar
  55. 55.
    Toogun, O. A., Dezwaan, D. C., and Freeman, B. C. (2008) The hsp90 molecular chaperone modulates multiple telomerase activities. Mol Cell Biol 28, 457–67.PubMedCrossRefGoogle Scholar
  56. 56.
    Prehn, R. T., and Main, J. M. (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18, 769–78.PubMedGoogle Scholar
  57. 57.
    DuBois, G. C., Law, L. W., and Appella, E. (1982) Purification and biochemical properties of tumor-associated transplantation antigens from methylcholanthrene-induced murine sarcomas. Proc Natl Acad Sci U S A 79, 7669–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Srivastava, P. K., DeLeo, A. B., and Old, L. J. (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A 83, 3407–11.PubMedCrossRefGoogle Scholar
  59. 59.
    Binder, R. J., Blachere, N. E., and Srivastava, P. K. (2001) Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem 276, 17163–71.PubMedCrossRefGoogle Scholar
  60. 60.
    Rajagopal, D., Bal, V., Mayor, S., George, A., and Rath, S. (2006) A role for the Hsp90 molecular chaperone family in antigen presentation to T lymphocytes via major histocompatibility complex class II molecules. Eur J Immunol 36, 828–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Loo, M. A., Jensen, T. J., Cui, L., Hou, Y., Chang, X. B., and Riordan, J. R. (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. Embo J 17, 6879–87.PubMedCrossRefGoogle Scholar
  62. 62.
    Riordan, J. R. (2005) Assembly of functional CFTR chloride channels. Annu Rev Physiol 67, 701–18.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang, X., Venable, J., LaPointe, P., Hutt, D. M., Koulov, A. V., Coppinger, J., Gurkan, C., Kellner, W., Matteson, J., Plutner, H., Riordan, J. R., Kelly, J. W., Yates, J. R., 3rd, and Balch, W. E. (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127, 803–15.PubMedCrossRefGoogle Scholar
  64. 64.
    Sun, F., Mi, Z., Condliffe, S. B., Bertrand, C. A., Gong, X., Lu, X., Zhang, R., Latoche, J. D., Pilewski, J. M., Robbins, P. D., and Frizzell, R. A. (2008) Chaperone displacement from mutant cystic fibrosis transmembrane conductance regulator restores its function in human airway epithelia. Faseb J 22, 3255–63.PubMedCrossRefGoogle Scholar
  65. 65.
    Youker, R. T., Walsh, P., Beilharz, T., Lithgow, T., and Brodsky, J. L. (2004) Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol Biol Cell 15, 4787–97.PubMedCrossRefGoogle Scholar
  66. 66.
    Jakob, U., Lilie, H., Meyer, I., and Buchner, J. (1995) Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem 270, 7288–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Muller, L., Schaupp, A., Walerych, D., Wegele, H., and Buchner, J. (2004) Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures. J Biol Chem 279, 48846–54.PubMedCrossRefGoogle Scholar
  68. 68.
    Nathan, D. F., Vos, M. H., and Lindquist, S. (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A 94, 12949–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations