Antibody Microarrays as Tools for Biomarker Discovery

  • Marta Sanchez-Carbayo
Part of the Methods in Molecular Biology book series (MIMB, volume 785)


The cancer biomarkers field is being enriched by molecular profiling obtained by high-throughput approaches. Targeted antibody arrays are strongly contributing to the identification of protein cancer ­biomarker candidates and functional proteomic analyses. Due to their versatility, novel technological and experimental design implementations are broadening the applications of antibody arrays. However, the cancer biomarker candidates delivered to date using this technology are still in their early developmental phase, requiring validation with high number of specimens focusing on specific clinical endpoints. Innovative strategies multiplexing protein measurements of protein extracts of cultured cells, tissue and body fluids using antibody arrays combined with appropriate validation approaches are enabling the ­discovery of cancer-associated biomarkers. This review describes these strategies and cancer biomarker candidates reported to date that may assist in the diagnosis, surveillance, prognosis, and potentially for predictive and therapeutic purposes for patients affected with solid and hematological neoplasias.

Key words

Antibody arrays Cancer biomarker discovery 


  1. 1.
    Pepe, M.S., Etzioni, R., Feng, Z., Potter, J.D., Thompson, M.L., Thornquist, M., Winget, M., Yasui, Y. (2001) Phases of biomarker development for early detection of cancer J Natl Cancer Inst 93, 1054–61.Google Scholar
  2. 2.
    Haab, B.B., Dunham, M.J., Brown, P.O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions Genome Biol 2, RESEARCH 0004.Google Scholar
  3. 3.
    Kingsmore, S.F. (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5, 310–321.PubMedCrossRefGoogle Scholar
  4. 4.
    Chan, S.M., Ermann, J., Su, L., Fathman, C.G., Utz, P.J. (2004) Protein microarrays for multiplex analysis of signal transduction pathways Nat Med 10, 13901396.Google Scholar
  5. 5.
    Angenendt, P., Glökler, J., Murphy, D., Lehrach, H., Cahill, D.J. (2002) Toward optimized antibody microarrays: a comparison of current microarray support materials Anal Biochem 309,253-60.Google Scholar
  6. 6.
    Kopf, E., Zharhary, D. (2007) Antibody arrays--an emerging tool in cancer proteomics Int J Biochem Cell Biol 39, 1305–1317.Google Scholar
  7. 7.
    Sanchez-Carbayo, M. (2006) Antibody arrays: technical considerations and clinical applications in cancer Clin Chem 52, 1651–1659.Google Scholar
  8. 8.
    Borrebaeck, C.A., Wingren, C. (2007) High-throughput proteomics using antibody microarrays: an update Expert Rev Mol Diagn 7, 673–686.Google Scholar
  9. 9.
    Wang, X., Yu, J., Sreekumar, A., Varambally, S., Shen, R., Giacherio, D., Mehra, R., Montie, J.E., Pienta, K.J., Sanda, M.G., Kantoff, P.W., Rubin, M.A., Wei, J.T., Ghosh, D., Chinnaiyan, A.M. (2005) Autoantibody signatures in prostate cancer N Engl J Med 353, 12241235.Google Scholar
  10. 10.
    Anderson, K.S., LaBaer, J. (2005) The sentinel within: exploiting the immune system for cancer biomarkers J Proteome Res 4, 1123–1133.Google Scholar
  11. 11.
    Nishizuka, S., Charboneau, L., Young, L., Major, S., Reinhold, W.C., Waltham, M., Kouros-Mehr, H., Bussey, K.J., Lee, J.K., Espina, V., Munson, P.J., Petricoin, E. 3rd., Liotta, L.A., Weinstein, J.N. (2003) Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays Proc Natl Acad Sci USA 100, 14229–14234.Google Scholar
  12. 12.
    Petricoin, E.F. 3rd., Bichsel, V.E., Calvert, V.S., Espina, V., Winters, M., Young, L., Belluco, C., Trock, B.J., Lippman, M., Fishman, D.A., Sgroi, D.C., Munson, P.J., Esserman, L.J., Liotta, L.A. (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy J Clin Oncol. 23, 3614–3621.Google Scholar
  13. 13.
    Lash, G.E., Scaife, P.J., Innes, B.A., Otun, H.A., Robson, S.C., Searle, R.F., Bulmer, J.N. (2006) Comparison of three multiplex cytokine analysis systems: Luminex, SearchLight and FAST Quant J Immunol Meth 309, 205–208.Google Scholar
  14. 14.
    de Jager, W., Rijkers, G.T.  (2006) Solid-phase and bead-based cytokine immunoassay: a comparison Methods 38, 294–303.Google Scholar
  15. 15.
    Waterboer, T., Sehr, P., Pawlita, M. (2006) Suppression of non-specific binding in serological Luminex assays J Immunol Methods 309, 200–204.Google Scholar
  16. 16.
    Dotan, N., Altstock, R.T., Schwarz, M., Dukler, A. (2006) Anti-glycan antibodies as biomarkers for diagnosis and prognosis Lupus 15, 442–450.Google Scholar
  17. 17.
    Chen, S., LaRoche, T., Hamelinck, D., Bergsma, D., Brenner, D., Simeone, D., Brand, R.E., Haab, B.B. (2007) Multiplexed analysis of ­glycan variation on native proteins captured by antibody microarrays Nat Methods 4, 437–444.Google Scholar
  18. 18.
    Nettikadan, S., Radke, K., Johnson, J., Xu, J., Lynch, M., Mosher, C., Henderson, E. J. (2006) Detection and quantification of protein biomarkers from fewer than 10 cells Mol Cell Proteomics 5, 895901.Google Scholar
  19. 19.
    Zajac, A., Song, D., Qian, W., Zhukov, T. (2007) Protein microarrays and quantum dot probes for early cancer detection Colloids Surf B Biointerfaces 58, 309–314.Google Scholar
  20. 20.
    Li, Y., Lee, H.J., Corn, R.M. (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging Anal Chem 79, 1082–1088.Google Scholar
  21. 21.
    Bock, C., Coleman, M., Collins, B., Davis, J., Foulds, G., Gold, L., Greef, C., Heil, J., Heilig, J.S., Hicke, B., Hurst, M.N., Husar, G.M., Miller, D., Ostroff, R., Petach, H., Schneider, D., ­Vant-Hull, B., Waugh, S., Weiss, A., Wilcox, S.K., Zichi, D. (2004) Photoaptamer arrays applied to multiplexed proteomic analysis Proteomics 4, 609–618.Google Scholar
  22. 22.
    Gembitsky, D.S., Lawlor, K., Jacovina, A., Yaneva, M., Tempst, P. (2004) A prototype antibody microarray platform to monitor changes in protein tyrosine phosphorylation Mol Cell Proteomics 3, 1102–1118.Google Scholar
  23. 23.
    Ivanov, S.S., Chung, A.S., Yuan, Z.L., Guan, Y.J., Sachs, K.V., Reichner, J.S., Chin, Y.E. (2004) Antibodies immobilized as arrays to profile protein post-translational modifications in mammalian cells Mol Cell Proteomics 3, 788–795.Google Scholar
  24. 24.
    Lin, Y., Huang, R., Cao, X., Wang, S.M., Shi, Q., Huang, R.P. (2003) Detection of multiple cytokines by protein arrays from cell lysate and tissue lysate Clin Chem Lab Med 41, 139145.Google Scholar
  25. 25.
    Vazquez-Martin, A., Colomer, R., Menendez, J.A. (2007) Protein array technology to detect HER2 (erbB-2)-induced ‘cytokine signature’ in breast cancer Eur J Cancer 43, 1117–1124.Google Scholar
  26. 26.
    Lin, Y., Huang, R., Chen, L.P., Lisoukov, H., Lu, Z.H., Li, S., Wang, C.C., Huang, R.P. (2003) Profiling of cytokine expression by biotin-labeled-based protein arrays Proteomics 3, 1750–1757.Google Scholar
  27. 27.
    Lin, Y., Huang, R., Chen, L., Li, S., Shi, Q., Jordan, C., Huang, R.P. (2004) Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays Int J Cancer 109, 507–515.Google Scholar
  28. 28.
    Garcia, B.H. 2nd., Hargrave, A., Morgan, A., Kilmer, G., Hommema, E., Nahrahari, J., Webb, B., Wiese, R. (2007) Antibody microarray analysis of inflammatory mediator release by human leukemia T-cells and human non small cell lung cancer cells J Biomol Tech 18, 245–251.Google Scholar
  29. 29.
    Nielsen, U.B., Cardone, M.H., Sinskey, A.J., MacBeath, G., Sorger, P.K. (2003) Profiling receptor tyrosine kinase activation by using Ab microarrays Proc Natl Acad Sci USA 100, 9330–9335.Google Scholar
  30. 30.
    Belov, L., de la Vega, O., dos Remedios, C.G., Mulligan, S.P., Christopherson, R.I. (2001) Immunophenotyping of leukemia using a cluster of differentiation antibody microarray Cancer Res 61, 4483.Google Scholar
  31. 31.
    Belov, L., Mulligan, S.P., Barber, N., Woolfson, A., Scott, M., Stoner, K., Chrisp, J.S., Sewell, W.A., Bradstock, K.F., Bendall, L., Pascovici, D.S., Thomas, M., Erber, W., Huang, P., Sartor, M., Young, G.A., Wiley, J.S., Juneja, S., Wierda, W.G., Green, A.R., Keating, M.J., Christopherson, R.I. (2006) Classification of human leukemias and lymphomas using extensive immunophenotypes from an antibody microarray Brit J Haem 135, 184–197.Google Scholar
  32. 32.
    Kato, K., Ishimuro, T., Arima, Y., Hirata, I., Iwata, H. (2007) High-Throughput Immuno­phenotyping by Surface Plasmon Resonance Imaging Anal Chem. 79, 8616–23.Google Scholar
  33. 33.
    Yeretssian, G., Lecocq, M., Lebon, G., Hurst, H.C., Sakanyan, V. (2005) Competition on nitrocellulose-immobilized antibody arrays: from bacterial protein binding assay to protein profiling in breast cancer cells Mol Cell Proteomics 4, 605–617.Google Scholar
  34. 34.
    Flores-Delgado, G., Liu, C.W., Sposto, R., Berndt, N. (2007) A limited screen for protein interactions reveals new roles for protein phosphatase 1 in cell cycle control and apoptosis J Proteome Res 6, 1165–1175.Google Scholar
  35. 35.
    Bartling, B., Hofmann, H.S., Boettger, T., Hansen, G., Burdach, S., Silber, R.E., Simm, A.T. (2005) Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma Lung Cancer 49, 145–154.Google Scholar
  36. 36.
    Hudelist, G., Pacher-Zavisin, M., Singer, C.F., Holper, T., Kubista, E., Schreiber, M., Manavi, M., Bilban, M., Czerwenka, K. (2004) Use of high-throughput protein array for profiling of differentially expressed proteins in normal and malignant breast tissue Breast Cancer Res Treat 86, 281–291.Google Scholar
  37. 37.
    Ek, S., Andréasson, U., Hober, S., Kampf, C., Pontén, F., Uhlén, M., Merz, H., Borrebaeck, C.A. (2006) From gene expression analysis to tissue microarrays - a rational approach to identify therapeutic and diagnostic targets in lymphoid malignancies Mol Cell Proteomics 5, 1072–1081.Google Scholar
  38. 38.
    Uhlén, M., Björling, E., Agaton, C., Szigyarto, C.A., Amini, B., Andersen, E., Andersson, A.C., Angelidou, P., Asplund, A., Asplund, C., Berglund, L., Bergström, K., Brumer, H., Cerjan, D., Ekström, M., Elobeid, A., Eriksson, C., Fagerberg, L., Falk, R., Fall, J., Forsberg, M., Björklund, M.G., Gumbel, K., Halimi, A., Hallin, I., Hamsten, C., Hansson, M., Hedhammar, M., Hercules, G., Kampf, C., Larsson, K., Lindskog, M., Lodewyckx, W., Lund, J., Lundeberg, J., Magnusson, K., Malm, E., Nilsson, P., Odling, J., Oksvold, P., Olsson, I., Oster, E., Ottosson, J., Paavilainen, L., Persson, A., Rimini, R., Rockberg, J., Runeson, M., Sivertsson, A., Sköllermo, A., Steen, J., Stenvall, M., Sterky, F., Strömberg, S., Sundberg, M., Tegel, H., Tourle, S., Wahlund, E., Waldén, A., Wan, J., Wernérus, H., Westberg, J., Wester, K., Wrethagen, U., Xu, L.L., Hober, S., Pontén, F. (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics Mol Cell Proteomics 4, 1920–1932.Google Scholar
  39. 39.
    Kellner, U., Steinert, R., Seibert, V., Heim, S., Kellner, A., Schulz, H.U., Roessner, A., Krüger, S., Reymond, M. (2004) Epithelial cell preparation for proteomic and transcriptomic analysis in human pancreatic tissue Pathol Res Pract 200, 155–163.Google Scholar
  40. 40.
    Miller, J.C., Zhou, H., Kwekel, J., Cavallo, R., Burke, J., Butler, E.B., the, B.S., Haab, B.B. (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers Proteomics 3, 56–63.Google Scholar
  41. 41.
    Schweitzer, B., Roberts, S., Grimwade, B., Shao, W., Wang, M., Fu, Q., Shu, Q., Laroche, I., Zhou, Z., Tchernev, V.T., Christiansen, J., Velleca, M., Kingsmore, S.F. (2002) Multiplexed protein profiling on microarrays by rolling-circle amplification Nat Biotechnol 20, 359–365.Google Scholar
  42. 42.
    Zhou, H., Bouwman, K., Schotanus, M., Verweij, C., Marrero, J.A., Dillon, D., Costa, J., Lizardi, P., Haab, B.B. (2004) Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements Genome Biol 5, R28.Google Scholar
  43. 43.
    Shao, W., Zhou, Z., Laroche, I., Lu, H., Zong, Q., Patel, D.D., Kingsmore, S., Piccoli, S.P. (2003) Optimization of Rolling-Circle Amplified Protein Microarrays for Multiplexed Protein Profiling J Biomed Biotechnol 5, 299–307.Google Scholar
  44. 44.
    Saviranta, P., Okon, R., Brinker, A., Warashina, M., Eppinger, J., Geierstanger, B.H. (2004) Evaluating sandwich immunoassays in microarray format in terms of the ambient analyte regime Clin Chem 50, 1907–1920.Google Scholar
  45. 45.
    Huang, R., Lin, Y., Shi, Q., Flowers, L., Ramachandran, S., Horowitz, I.R., Parthasarathy, S., Huang, R.P. (2004) Enhanced protein profiling arrays with ELISA-based amplification for high-throughput molecular changes of tumor patients’ plasma Clin Cancer Res 10, 598–609.Google Scholar
  46. 46.
    Varnum, S.M., Woodbury, R.L., Zangar, R.C. (2004) A protein microarray ELISA for screening biological fluids Methods Mol Biol 264, 161–172.Google Scholar
  47. 47.
    Sanchez-Carbayo, M., Socci, N.D., Lozano, J.J., Haab, B.B., Cordon-Cardo, C. (2006) Profiling bladder cancer using targeted antibody arrays. Am J Pathol 168, 93–103.PubMedCrossRefGoogle Scholar
  48. 48.
    Celis, J.E., Gromov, P., Cabezón, T., Moreira, J.M., Ambartsumian, N., Sandelin, K., Rank, F., Gromova, I. (2004) Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery Mol Cell Proteomics 3, 327–344.Google Scholar
  49. 49.
    Celis, J.E., Moreira, J.M., Cabezón, T., Gromov, P., Friis, E., Rank, F., Gromova, I. (2005) Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions Mol Cell Proteomics 4, 492–522.Google Scholar
  50. 50.
    Romeo, M.J., Espina, V., Lowenthal, M., Espina, B.H., Petricoin, E.F. 3rd., Liotta, L.A. (2005) CSF proteome: a protein repository for potential biomarker identification Expert Rev Proteomics 2, 57–70.Google Scholar
  51. 51.
    Shafer, M.W., Mangold, L., Partin, A.W., Haab, B.B. (2007) Antibody array profiling reveals serum TSP-1 as a marker to distinguish benign from malignant prostatic disease Prostate 67, 255–367.Google Scholar
  52. 52.
    Rai, A.J., Gelfand, C.A., Haywood, B.C., Warunek, D.J., Yi, J., Schuchard, M.D., Mehigh, R.J., Cockrill, S.L., Scott, G.B., Tammen, H., Schulz-Knappe, P., Speicher, D.W., Vitzthum, F., Haab, B.B., Siest, G., Chan, D.W. (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples Proteomics 5, 3262–3277.Google Scholar
  53. 53.
    States, D.J., Omenn, G.S., Blackwell, T.W., Fermin, D., Eng, J., Speicher, D.W., Hanash, S.M. (2006) Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study Nat Biotechnol 24, 333–8.Google Scholar
  54. 54.
    Haab, B.B. (2005) Antibody arrays in cancer research Mol Cell Proteomics 4, 377–383.Google Scholar
  55. 55.
    Borrebaeck, C.A. (2006) Antibody microarray-based oncoproteomics. Expert Opin Biol Ther 6, 833–838.PubMedCrossRefGoogle Scholar
  56. 56.
    Sanchez-Carbayo, M. (2010) Antibody array-based technologies for cancer protein profiling and functional proteomic analyses using serum and tissue specimens Tumour Biol 31, 103–12.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Tumor Markers Group, Spanish National Cancer Research CenterMadridSpain

Personalised recommendations