Single Molecule Analysis pp 1-20

Part of the Methods in Molecular Biology book series (MIMB, volume 783) | Cite as

Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions

  • Joost van Mameren
  • Gijs J. L. Wuite
  • Iddo Heller
Protocol

Abstract

Optical tweezers are a means to manipulate objects with light. With the technique, microscopically small objects can be held and steered while forces on the trapped objects can be accurately measured and exerted. Optical tweezers can typically obtain a nanometer spatial resolution, a piconewton force resolution, and a millisecond time resolution, which make them excellently suited to study biological processes from the single-cell down to the single-molecule level. In this chapter, we provide an introduction on the use of optical tweezers in single-molecule approaches. We introduce the basic principles and methodology involved in optical trapping, force calibration, and force measurements. Next, we describe the components of an optical tweezers setup and their experimental relevance in single-molecule approaches. Finally, we provide a concise overview of commercial optical tweezers systems. Commercial systems are becoming increasingly available and provide access to single-molecule optical tweezers experiments without the need for a thorough background in physics.

Key words

Optical tweezers Optical trap Radiation pressure Single molecule Trap stiffness calibration Force spectroscopy Instrument design Commercial optical tweezers Molecular motors DNA–protein interactions 

References

  1. 1.
    Ashkin, A. (1970) Acceleration and Trapping of Particles by Radiation Pressure Physical Review Letters 24, 156–9.Google Scholar
  2. 2.
    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S. (1986) Observation of a single-beam gradient force optical trap for dielectric particles Optics Letters 11, 288–90.Google Scholar
  3. 3.
    Chu, S. (1991) Laser manipulation of atoms and particles Science 253, 861–6.Google Scholar
  4. 4.
    Chu, S. (1992) Laser trapping of neutral particles Scientific American 266, 70–6.Google Scholar
  5. 5.
    Svoboda, K., and Block, S. M. (1994) Biological Applications of Optical Forces Annual Review of Biophysics & Biomolecular Structure 23, 247–85.Google Scholar
  6. 6.
    Neuman, K. C., and Block, S. M. (2004) Optical trapping Review of Scientific Instruments 75, 2787–809.Google Scholar
  7. 7.
    Moffitt, J. R., Chemla, Y. R., Smith, S. B., and Bustamante, C. (2008) Recent Advances in Optical Tweezers Annual Review of Biochemistry 77, 205–28.Google Scholar
  8. 8.
    Ashkin, A., and Dziedzic, J. M. (1987) Optical trapping and manipulation of viruses and bacteria Science 235, 1517–20.Google Scholar
  9. 9.
    Ashkin, A., Dziedzic, J. M., and Yamane, T. (1987) Optical trapping and manipulation of single cells using infrared-laser beams Nature 330, 769–71.Google Scholar
  10. 10.
    Block, S. M., Goldstein, L. S. B., and Schnapp, B. J. (1990) Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers Nature 348, 348–52.Google Scholar
  11. 11.
    Bustamante, C., Macosko, J. C., and Wuite, G. J. L. (2000) Grabbing the cat by the tail: Manipulating molecules one by one Nature Reviews Molecular Cell Biology 1, 130–6.Google Scholar
  12. 12.
    Davenport, R. J., Wuite, G. J. L., Landick, R., and Bustamante, C. (2000) Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase Science 287, 2497–500.Google Scholar
  13. 13.
    Smith, S. B., Cui, Y., and Bustamante, C. (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules Science 271, 795–9.Google Scholar
  14. 14.
    Svoboda, K., Schmidt, C. F., Schnapp, B. J., and Block, S. M. (1993) Direct Observation of Kinesin Stepping by Optical Trapping Interferometry Nature 365, 721–7.Google Scholar
  15. 15.
    Wuite, G. J. L., Smith, S. B., Young, M., Keller, D., and Bustamante, C. (2000) Single-molecule studies of the effect of template tension on T7 DNA polymerase activity Nature 404, 103–6.Google Scholar
  16. 16.
    EssevazRoulet, B., Bockelmann, U., and Heslot, F. (1997) Mechanical separation of the complementary strands of DNA Proceedings of the National Academy of Sciences of the United States of America 94, 11935–40.Google Scholar
  17. 17.
    Kellermayer, M. S. Z., and Bustamante, C. (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers (vol 276, pg 1112, 1997) Science 276, 1112–6.Google Scholar
  18. 18.
    Tskhovrebova, L., Trinick, J., Sleep, J. A., and Simmons, R. M. (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin Nature 387, 308–12.Google Scholar
  19. 19.
    Wang, M. D., Schnitzer, M. J., Yin, H., Landick, R., Gelles, J., and Block, S. M. (1998) Force and velocity measured for single molecules of RNA polymerase Science 282, 902–7.Google Scholar
  20. 20.
    Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M., and Gelles, J. (1995) Transcription against an applied force Science 270, 1653–7.Google Scholar
  21. 21.
    Bustamante, C., Bryant, Z., and Smith, S. B. (2003) Ten years of tension: single-molecule DNA mechanics Nature 421, 423–7.Google Scholar
  22. 22.
    Dame, R. T., Noom, M. C., and Wuite, G. J. L. (2006) Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation Nature 444, 387–90.Google Scholar
  23. 23.
    Matthews, J. N. A. (2009) Commercial optical traps emerge from biophysics labs Physics Today 62, 26–8.Google Scholar
  24. 24.
    Ashkin, A. (1992) Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime Biophysical Journal 61, 569–82.Google Scholar
  25. 25.
    Gittes, F., and Schmidt, C. F. (1998) Signals and noise in micromechanical measurements, in Methods in Cell Biology, pp 129–56, Academic Press, London.Google Scholar
  26. 26.
    Reif, F. (1965) Fundamentals of statistical and thermal physics, McGraw Hill, New York.Google Scholar
  27. 27.
    Peterman, E. J. G., Gittes, F., and Schmidt, C. F. (2003) Laser-induced heating in optical traps Biophysical Journal 84, 1308–16.Google Scholar
  28. 28.
    Vermeulen, K. C., Wuite, G. J. L., Stienen, G. J. M., and Schmidt, C. F. (2006) Optical trap stiffness in the presence and absence of spherical aberrations Applied Optics 45, 1812–9.Google Scholar
  29. 29.
    Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T. J., Cunningham, C. C., and Kas, J. (2001) The optical stretcher: A novel laser tool to micromanipulate cells Biophysical Journal 81, 767–84.Google Scholar
  30. 30.
    van Mameren, J., Peterman, E. J. G., and Wuite, G. J. L. (2008) See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins Nucleic Acids Research 36, 4381–9.Google Scholar
  31. 31.
    Brewer, L. R., and Bianco, P. R. (2008) Laminar flow cells for single-molecule studies of DNA-protein interactions Nature Methods 5, 517–25.Google Scholar
  32. 32.
    Mahamdeh, M., and Schaffer, E. (2009) Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution Optics Express 17, 17190–9.Google Scholar
  33. 33.
    Cheezum, M. K., Walker, W. F., and Guilford, W. H. (2001) Quantitative comparison of algorithms for tracking single fluorescent particles Biophysical Journal 81, 2378–88.Google Scholar
  34. 34.
    Crocker, J. C., and Grier, D. G. (1996) Methods of digital video microscopy for colloidal studies Journal of Colloid and Interface Science 179, 298–310.Google Scholar
  35. 35.
    Finer, J. T., Simmons, R. M., and Spudich, J. A. (1994) Single myosin molecule mechanics - piconewton forces and nanometer steps Nature 368, 113–9.Google Scholar
  36. 36.
    Visscher, K., Gross, S. P., and Block, S. M. (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE Journal of Selected Topics in Quantum Electronics 2, 1066–76.Google Scholar
  37. 37.
    Denk, W., and Webb, W. W. (1990) Optical measurement of picometer displacements of transparent microscopic objects Applied Optics 29, 2382–91.Google Scholar
  38. 38.
    Gittes, F., and Schmidt, C. F. (1998) Interference model for back-focal-plane displacement detection in optical tweezers Optics Letters 23, 7–9.Google Scholar
  39. 39.
    Dreyer, J. K., Berg-Sorensen, K., and Oddershede, L. (2004) Improved axial position detection in optical tweezers measurements Applied Optics 43, 1991–5.Google Scholar
  40. 40.
    Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., and Block, S. M. (2005) Direct observation of base-pair stepping by RNA polymerase Nature 438, 460–5.Google Scholar
  41. 41.
    van Mameren, J., Gross, P., Farge, G., Hooijman, P., Modesti, M., Falkenberg, M., Wuite, G. J. L., and Peterman, E. J. G. (2009) Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging Proceedings of the National Academy of Sciences of the United States of America 106, 18231–6.Google Scholar
  42. 42.
    van Mameren, J., Modesti, M., Kanaar, R., Wyman, C., Peterman, E. J. G., and Wuite, G. J. L. (2009) Counting RAD51 proteins disassembling from nucleoprotein filaments under tension Nature 457, 745–8.Google Scholar
  43. 43.
    Bennink, M. L., Scharer, O. D., Kanaar, R., Sakata-Sogawa, K., Schins, J. M., Kanger, J. S., de Grooth, B. G., and Greve, J. (1999) Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1 Cytometry 36, 200–8.Google Scholar
  44. 44.
    Murade, C. U., Subramaniam, V., Otto, C., and Bennink, M. L. (2010) Force spectroscopy and fluorescence microscopy of dsDNA-YOYO-1 complexes: implications for the structure of dsDNA in the overstretching region Nucl. Acids Res.Google Scholar
  45. 45.
    Petrov, D. V. (2007) Raman spectroscopy of optically trapped particles Journal of Optics A: Pure and Applied Optics 9, S139-S56.Google Scholar
  46. 46.
    Rao, S., Bálint, t., Cossins, B., Guallar, V., and Petrov, D. (2009) Raman Study of Mechanically Induced Oxygenation State Transition of Red Blood Cells Using Optical Tweezers 96, 209–16.Google Scholar
  47. 47.
    Grier, D. G. (2003) A revolution in optical manipulation Nature 424, 810–6.Google Scholar
  48. 48.
    Liesener, J., Reicherter, M., Haist, T., and Tiziani, H. J. (2000) Multi-functional optical tweezers using computer-generated holograms Optics Communications 185, 77–82.Google Scholar
  49. 49.
    Mio, C., Gong, T., Terray, A., and Marr, D. W. M. (2000) Design of a scanning laser optical trap for multiparticle manipulation Review of Scientific Instruments 71, 2196–200.Google Scholar
  50. 50.
    Visscher, K., Brakenhoff, G. J., and Krol, J. J. (1993) Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope Cytometry 14, 105–14.Google Scholar
  51. 51.
    Noom, M. C., van den Broek, B., van Mameren, J., and Wuite, G. J. L. (2007) Visualizing single DNA-bound proteins using DNA as a scanning probe Nature Methods 4, 1031–6.Google Scholar
  52. 52.
    Piggee, C. (2008) Optical tweezers: not just for physicists anymore Analytical Chemistry 81, 16–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joost van Mameren
    • 1
  • Gijs J. L. Wuite
    • 2
  • Iddo Heller
    • 3
  1. 1.JPK Instruments AGBerlinGermany
  2. 2.Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Physics and AstronomyVU UniversityAmsterdamThe Netherlands

Personalised recommendations