Advertisement

Advanced Methods for High-Throughput Microscopy Screening of Genetically Modified Yeast Libraries

  • Yifat Cohen
  • Maya SchuldinerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 781)

Abstract

High-throughput methodologies have created new opportunities for studying biological phenomena in an unbiased manner. Using automated cell manipulations and microscopy platforms, it is now possible to easily screen entire genomes for genes that affect any cellular process that can be visualized. The onset of these methodologies promises that the near future will bring with it a more comprehensive and richly integrated understanding of complex and dynamic cellular structures and processes. In this review, we describe how to couple systematic genetic tools in the budding yeast Saccharomyces cerevisiae alongside robotic visualization systems to attack biological questions. The combination of high-throughput microscopy screens with the powerful, yet simple, yeast model system for studying the eukaryotic cell should pioneer new knowledge in all areas of cell biology.

Key words

Yeast Saccharomyces cerevisiae Systematic libraries SGA Genetic screen High- throughput Automated microscopy Fluorescent marker Cellular phenotypes 

Notes

Acknowledgments

Yifat Cohen and Maya Schuldiner were funded by the Legacy Heritage Biomedical Science Partnership Program of the Israel Science Foundation (grant No. 1995/08). Yifat Cohen is a ­recipient of the Karen Siem Fellowship for Women in Science. We would like to thank Michal Breker and Anat Shemesh for help with setting up the protocols and robotics to enable high-throughput microscopy in our laboratory. We would like to thank Moshe Gabso, Ayelet Rahat, and all the members of the Schuldiner ­laboratory for critical reading of the manuscript.

References

  1. 1.
    Farquhar, M. G., and Palade, G. E. (1998) The Golgi apparatus: 100 years of progress and controversy, Trends Cell Biol 8, 2–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Droscher, A. (1998) Camillo Golgi and the discovery of the Golgi apparatus, Histochem Cell Biol 109, 425–430.PubMedCrossRefGoogle Scholar
  3. 3.
    Rieder, C. L., and Khodjakov, A. (2003) Mitosis through the microscope: advances in seeing inside live dividing cells, Science 300, 91–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Tong, A. H. Y., and Boone, C. (2007) High-Throughput Strain Construction and Systematic Synthetic Lethal Screening in Saccharomyces cerevisiae, in Methods in Microbiology (Stansfield, I., and Stark, M. J., Eds.) Second ed., pp 369–386, Elsevier Academic Press.Google Scholar
  5. 5.
    Tong, A. H., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C. W., Bussey, H., Andrews, B., Tyers, M., and Boone, C. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants, Science 294, 2364–2368.PubMedCrossRefGoogle Scholar
  6. 6.
    Tong, A. H., and Boone, C. (2006) Synthetic genetic array analysis in Saccharomyces cerevisiae, Methods Mol Biol 313, 171–192.PubMedGoogle Scholar
  7. 7.
    Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent ­proteins, Nat Methods 2, 905–909.PubMedCrossRefGoogle Scholar
  8. 8.
    Shaner, N. C., Patterson, G. H., and Davidson, M. W. (2007) Advances in fluorescent protein technology, J Cell Sci 120, 4247–4260.PubMedCrossRefGoogle Scholar
  9. 9.
    Frommer, W. B., Davidson, M. W., and Campbell, R. E. (2009) Genetically encoded biosensors based on engineered fluorescent proteins, Chem Soc Rev 38, 2833–2841.PubMedCrossRefGoogle Scholar
  10. 10.
    Morris, M. C. (2010) Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes, Cell Biochem Biophys 56, 19–37.PubMedCrossRefGoogle Scholar
  11. 11.
    Ibraheem, A., and Campbell, R. E. (2010) Designs and applications of fluorescent ­protein-based biosensors, Curr Opin Chem Biol 14, 30–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, H., Nakata, E., and Hamachi, I. (2009) Recent progress in strategies for the creation of protein-based fluorescent biosensors, Chembiochem 10, 2560–2577.PubMedCrossRefGoogle Scholar
  13. 13.
    Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388, 882–887.PubMedCrossRefGoogle Scholar
  14. 14.
    Paroutis, P., Touret, N., and Grinstein, S. (2004) The pH of the secretory pathway: measurement, determinants, and regulation, Physiology (Bethesda) 19, 207–215.Google Scholar
  15. 15.
    Schuldiner, M., Collins, S. R., Weissman, J. S., and Krogan, N. J. (2006) Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions, Methods 40, 344–352.PubMedCrossRefGoogle Scholar
  16. 16.
    Vizeacoumar, F. J., Chong, Y., Boone, C., and Andrews, B. J. (2009) A picture is worth a thousand words: genomics to phenomics in the yeast Saccharomyces cerevisiae, FEBS Lett 583, 1656–1661.PubMedCrossRefGoogle Scholar
  17. 17.
    Gough, A. H., and Johnston, P. A. (2007) Requirements, features, and performance of high content screening platforms, Methods Mol Biol 356, 41–61.PubMedGoogle Scholar
  18. 18.
    Pepperkok, R., and Ellenberg, J. (2006) High-throughput fluorescence microscopy for systems biology, Nat Rev Mol Cell Biol 7, 690–696.PubMedCrossRefGoogle Scholar
  19. 19.
    Megason, S. G., and Fraser, S. E. (2007) Imaging in systems biology, Cell 130, 784–795.PubMedCrossRefGoogle Scholar
  20. 20.
    Araki, Y., Wu, H., Kitagaki, H., Akao, T., Takagi, H., and Shimoi, H. (2009) Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae, J Biosci Bioeng 107, 1–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Cai, L., Dalal, C. K., and Elowitz, M. B. (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation, Nature 455, 485–490.PubMedCrossRefGoogle Scholar
  22. 22.
    Lim, R. P., Misra, A., Wu, Z., and Thanabalu, T. (2007) Analysis of conformational changes in WASP using a split YFP, Biochem Biophys Res Commun 362, 1085–1089.PubMedCrossRefGoogle Scholar
  23. 23.
    Anand, V. C., Daboussi, L., Lorenz, T. C., and Payne, G. S. (2009) Genome-wide analysis of AP-3-dependent protein transport in yeast, Mol Biol Cell 20, 1592–1604.PubMedCrossRefGoogle Scholar
  24. 24.
    Kanki, T., Wang, K., Baba, M., Bartholomew, C. R., Lynch-Day, M. A., Du, Z., Geng, J., Mao, K., Yang, Z., Yen, W. L., and Klionsky, D. J. (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy, Mol Biol Cell 20, 4730–4738.PubMedCrossRefGoogle Scholar
  25. 25.
    Jonikas, M. C., Collins, S. R., Denic, V., Oh, E., Quan, E. M., Schmid, V., Weibezahn, J., Schwappach, B., Walter, P., Weissman, J. S., and Schuldiner, M. (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum, Science 323, 1693–1697.PubMedCrossRefGoogle Scholar
  26. 26.
    Merksamer, P. I., Trusina, A., and Papa, F. R. (2008) Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions, Cell 135, 933–947.PubMedCrossRefGoogle Scholar
  27. 27.
    Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., Andre, B., Arkin, A. P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K. D., Flaherty, P., Foury, F., Garfinkel, D. J., Gerstein, M., Gotte, D., Guldener, U., Hegemann, J. H., Hempel, S., Herman, Z., Jaramillo, D. F., Kelly, D. E., Kelly, S. L., Kotter, P., LaBonte, D., Lamb, D. C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S. L., Revuelta, J. L., Roberts, C. J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D. D., Sookhai-Mahadeo, S., Storms, R. K., Strathern, J. N., Valle, G., Voet, M., Volckaert, G., Wang, C. Y., Ward, T. R., Wilhelmy, J., Winzeler, E. A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J. D., Snyder, M., Philippsen, P., Davis, R. W., and Johnston, M. (2002) Functional profiling of the Saccharomyces cerevisiae genome, Nature 418, 387–391.PubMedCrossRefGoogle Scholar
  28. 28.
    Breslow, D. K., Cameron, D. M., Collins, S. R., Schuldiner, M., Stewart-Ornstein, J., Newman, H. W., Braun, S., Madhani, H. D., Krogan, N. J., and Weissman, J. S. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome, Nat Methods 5, 711–718.PubMedCrossRefGoogle Scholar
  29. 29.
    Ben-Aroya, S., Coombes, C., Kwok, T., O’Donnell, K. A., Boeke, J. D., and Hieter, P. (2008) Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae, Mol Cell 30, 248–258.PubMedCrossRefGoogle Scholar
  30. 30.
    Mnaimneh, S., Davierwala, A. P., Haynes, J., Moffat, J., Peng, W. T., Zhang, W., Yang, X., Pootoolal, J., Chua, G., Lopez, A., Trochesset, M., Morse, D., Krogan, N. J., Hiley, S. L., Li, Z., Morris, Q., Grigull, J., Mitsakakis, N., Roberts, C. J., Greenblatt, J. F., Boone, C., Kaiser, C. A., Andrews, B. J., and Hughes, T. R. (2004) Exploration of essential gene functions via titratable promoter alleles, Cell 118, 31–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., Snyder, M., Oliver, S. G., Cyert, M., Hughes, T. R., Boone, C., and Andrews, B. (2006) Mapping pathways and phenotypes by systematic gene overexpression, Mol Cell 21, 319–330.PubMedCrossRefGoogle Scholar
  32. 32.
    Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., and O’Shea, E. K. (2003) Global analysis of protein localization in budding yeast, Nature 425, 686–691.PubMedCrossRefGoogle Scholar
  33. 33.
    Tudisca, V., Recouvreux, V., Moreno, S., Boy-Marcotte, E., Jacquet, M., and Portela, P. (2010) Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions, Eur J Cell Biol 89, 339–348.PubMedCrossRefGoogle Scholar
  34. 34.
    Sheth, U., and Parker, R. (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies, Science 300, 805–808.PubMedCrossRefGoogle Scholar
  35. 35.
    Brengues, M., and Parker, R. (2007) Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae, Mol Biol Cell 18, 2592–2602.PubMedCrossRefGoogle Scholar
  36. 36.
    Kulkarni, M., Ozgur, S., and Stoecklin, G. (2010) On track with P-bodies, Biochem Soc Trans 38, 242–251.PubMedCrossRefGoogle Scholar
  37. 37.
    Buchan, J. R., Muhlrad, D., and Parker, R. (2008) P bodies promote stress granule assembly in Saccharomyces cerevisiae, J Cell Biol 183, 441–455.PubMedCrossRefGoogle Scholar
  38. 38.
    Kaganovich, D., Kopito, R., and Frydman, J. (2008) Misfolded proteins partition between two distinct quality control compartments, Nature 454, 1088–1095.PubMedCrossRefGoogle Scholar
  39. 39.
    Xie, Z., and Klionsky, D. J. (2007) Autophagosome formation: core machinery and adaptations, Nat Cell Biol 9, 1102–1109.PubMedCrossRefGoogle Scholar
  40. 40.
    Ryan, C., Greene, D., Cagney, G., and Cunningham, P. (2010) Missing value imputation for epistatic MAPs, BMC Bioinformatics 11, 197.PubMedCrossRefGoogle Scholar
  41. 41.
    Fiedler, D., Braberg, H., Mehta, M., Chechik, G., Cagney, G., Mukherjee, P., Silva, A. C., Shales, M., Collins, S. R., van Wageningen, S., Kemmeren, P., Holstege, F. C., Weissman, J. S., Keogh, M. C., Koller, D., Shokat, K. M., and Krogan, N. J. (2009) Functional organization of the S. cerevisiae phosphorylation network, Cell 136, 952–963.PubMedCrossRefGoogle Scholar
  42. 42.
    Dixon, S. J., Costanzo, M., Baryshnikova, A., Andrews, B., and Boone, C. (2009) Systematic mapping of genetic interaction networks, Annu Rev Genet 43, 601–625.PubMedCrossRefGoogle Scholar
  43. 43.
    Boone, C., Bussey, H., and Andrews, B. J. (2007) Exploring genetic interactions and networks with yeast, Nat Rev Genet 8, 437–449.PubMedCrossRefGoogle Scholar
  44. 44.
    Beltrao, P., Cagney, G., and Krogan, N. J. (2010) Quantitative genetic interactions reveal biological modularity, Cell 141, 739–745.PubMedCrossRefGoogle Scholar
  45. 45.
    Schuldiner, M., Collins, S. R., Thompson, N. J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J. F., Weissman, J. S., and Krogan, N. J. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile, Cell 123, 507–519.PubMedCrossRefGoogle Scholar
  46. 46.
    Collins, S. R., Miller, K. M., Maas, N. L., Roguev, A., Fillingham, J., Chu, C. S., Schuldiner, M., Gebbia, M., Recht, J., Shales, M., Ding, H., Xu, H., Han, J., Ingvarsdottir, K., Cheng, B., Andrews, B., Boone, C., Berger, S. L., Hieter, P., Zhang, Z., Brown, G. W., Ingles, C. J., Emili, A., Allis, C. D., Toczyski, D. P., Weissman, J. S., Greenblatt, J. F., and Krogan, N. J. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map, Nature 446, 806–810.PubMedCrossRefGoogle Scholar
  47. 47.
    Breker, M., and Schuldiner, M. (2009) Explorations in topology-delving underneath the surface of genetic interaction maps, Mol Biosyst 5, 1473–1481.PubMedCrossRefGoogle Scholar
  48. 48.
    Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., and Boeke, J. D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast 14, 115–132.PubMedCrossRefGoogle Scholar
  49. 49.
    Sychrova, H., and Chevallier, M. R. (1993) Cloning and sequencing of the Saccharomyces cerevisiae gene LYP1 coding for a lysine-specific permease, Yeast 9, 771–782.PubMedCrossRefGoogle Scholar
  50. 50.
    Day, R. N., and Davidson, M. W. (2009) The fluorescent protein palette: tools for cellular imaging, Chem Soc Rev 38, 2887–2921.PubMedCrossRefGoogle Scholar
  51. 51.
    Sprague, G. F., Jr. (2004) Assay of Yeast Mating Reaction, in Guide to Yeast Genetics and Molecular and Cell Biology (Guthrie, C., and Fink, G. R., Eds.), pp 77–93, Elsevier Academic Press, San Diego.Google Scholar
  52. 52.
    Sheff, M. A., and Thorn, K. S. (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae, Yeast 21, 661–670.PubMedCrossRefGoogle Scholar
  53. 53.
    DeLuna, A., Vetsigian, K., Shoresh, N., Hegreness, M., Colon-Gonzalez, M., Chao, S., and Kishony, R. (2008) Exposing the fitness contribution of duplicated genes, Nat Genet 40, 676–681.PubMedCrossRefGoogle Scholar
  54. 54.
    Hughes, T. R., Roberts, C. J., Dai, H., Jones, A. R., Meyer, M. R., Slade, D., Burchard, J., Dow, S., Ward, T. R., Kidd, M. J., Friend, S. H., and Marton, M. J. (2000) Widespread aneuploidy revealed by DNA microarray expression profiling, Nat Genet 25, 333–337.PubMedCrossRefGoogle Scholar
  55. 55.
    Voth, W. P., Jiang, Y. W., and Stillman, D. J. (2003) New ‘marker swap’ plasmids for converting selectable markers on budding yeast gene disruptions and plasmids, Yeast 20, 985–993.PubMedCrossRefGoogle Scholar
  56. 56.
    Collins, S. R., Schuldiner, M., Krogan, N. J., and Weissman, J. S. (2006) A strategy for extracting and analyzing large-scale quantitative epistatic interaction data, Genome Biol in press.Google Scholar
  57. 57.
    Ho, C. H., Magtanong, L., Barker, S. L., Gresham, D., Nishimura, S., Natarajan, P., Koh, J. L., Porter, J., Gray, C. A., Andersen, R. J., Giaever, G., Nislow, C., Andrews, B., Botstein, D., Graham, T. R., Yoshida, M., and Boone, C. (2009) A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds, Nat Biotechnol 27, 369–377.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones, G. M., Stalker, J., Humphray, S., West, A., Cox, T., Rogers, J., Dunham, I., and Prelich, G. (2008) A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae, Nat Methods 5, 239–241.PubMedCrossRefGoogle Scholar
  59. 59.
    Kitada, K., Yamaguchi, E., and Arisawa, M. (1995) Cloning of the Candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation, Gene 165, 203–206.PubMedCrossRefGoogle Scholar
  60. 60.
    Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, Yeast 14, 953–961.PubMedCrossRefGoogle Scholar
  61. 61.
    Goldstein, A. L., and McCusker, J. H. (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae, Yeast 15, 1541–1553.PubMedCrossRefGoogle Scholar
  62. 62.
    Janke, C., Magiera, M. M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., and Knop, M. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes, Yeast 21, 947–962.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations