Phenotypic Characterization of Parp-1 and Parp-2 Deficient Mice and Cells

  • Christian Boehler
  • Laurent Gauthier
  • Jose Yelamos
  • Aurélia Noll
  • Valérie Schreiber
  • Françoise Dantzer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 780)

Abstract

Poly(ADP-ribosyl)ation is a post-translational modification of proteins mediated by Poly(ADP-ribose) polymerases (Parps), a family of 17 members. Among them, Poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 are so far the sole enzymes whose catalytic activity has been shown to be induced by DNA strand breaks. The generation and characterization of Parp-1 and Parp-2 deficient cellular and animal models have largely contributed to describe both proteins as active players of the base excision repair/single-strand break repair (BER/SSBR) process with both redundant and more specific functions. Double Parp-1−/−Parp-2−/− embryos die at gastrulation demonstrating the crucial role of poly(ADP-ribosyl)ation during embryonic development, whereas a specific female lethality related to X chromosome instability is associated with the Parp-1+/−Parp-2−/− genotype. Finally, recent research discovered emerging unique functions of Parp-2 in physiological processes including spermatogenesis, T-cell maturation, and adipogenesis although with distinct mechanisms. In this chapter, we describe standard operating procedures used to genotype and phenotype both mouse lines and the derived mouse embryonic fibroblasts.

Key words

Poly(ADP-ribose) polymerases Genome integrity DNA damage Knockout mice Mouse embryonic fibroblasts 

References

  1. 1.
    Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528PubMedCrossRefGoogle Scholar
  2. 2.
    Yelamos J, Schreiber V, Dantzer F (2008) Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 14:169–178PubMedCrossRefGoogle Scholar
  3. 3.
    Chalmers A, Johnston P, Woodcock M, Joiner M, Marples B (2004) PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation. Int J Radiat Oncol Biol Phys 58:410–419PubMedCrossRefGoogle Scholar
  4. 4.
    Menissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, Schreiber V, Ame JC, Dierich A, LeMeur M, Sabatier L, Chambon P, de Murcia G (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22:2255–2263PubMedCrossRefGoogle Scholar
  5. 5.
    Dantzer F, Giraud-Panis MJ, Jaco I, Ame JC, Schultz I, Blasco M, Koering CE, Gilson E, Menissier-de Murcia J, de Murcia G, Schreiber V (2004) Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol 24:1595–1607PubMedCrossRefGoogle Scholar
  6. 6.
    Gomez M, Wu J, Schreiber V, Dunlap J, Dantzer F, Wang Y, Liu Y (2006) PARP1 is a TRF2-associated poly(ADP-ribose)polymerase and protects eroded telomeres. Mol Biol Cell 17:1686–1696PubMedCrossRefGoogle Scholar
  7. 7.
    Saxena A, Wong LH, Kalitsis P, Earle E, Shaffer LG, Choo KH (2002) Poly(ADP-ribose) polymerase 2 localizes to mammalian active centromeres and interacts with PARP-1, Cenpa, Cenpb and Bub3, but not Cenpc. Hum Mol Genet 11:2319–2329PubMedCrossRefGoogle Scholar
  8. 8.
    Saxena A, Saffery R, Wong LH, Kalitsis P, Choo KH (2002) Centromere proteins Cenpa, Cenpb, and Bub3 interact with poly(ADP-ribose) polymerase-1 protein and are poly(ADP-ribosyl)ated. J Biol Chem 277:26921–26926PubMedCrossRefGoogle Scholar
  9. 9.
    Meder VS, Boeglin M, de Murcia G, Schreiber V (2005) PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 118:211–222PubMedCrossRefGoogle Scholar
  10. 10.
    Dantzer F, Mark M, Quenet D, Scherthan H, Huber A, Liebe B, Monaco L, Chicheportiche A, Sassone-Corsi P, de Murcia G, Menissier-de Murcia J (2006) Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci U S A 103:14854–14859PubMedCrossRefGoogle Scholar
  11. 11.
    Bai P, Houten SM, Huber A, Schreiber V, Watanabe M, Kiss B, de Murcia G, Auwerx J, Menissier-de Murcia J (2007) PARP-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the RXR/PPARgamma heterodimer. J Biol Chem 282:37738–37746Google Scholar
  12. 12.
    Yelamos J, Monreal Y, Saenz L, Aguado E, Schreiber V, Mota R, Fuente T, Minguela A, Parrilla P, de Murcia G, Almarza E, Aparicio P, Menissier-de Murcia J (2006) PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J 25:4350–4360PubMedCrossRefGoogle Scholar
  13. 13.
    Robert I, Dantzer F, Reina-San-Martin B (2009) Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206:1047–1056PubMedCrossRefGoogle Scholar
  14. 14.
    de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94:7303–7307PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christian Boehler
    • 1
  • Laurent Gauthier
    • 2
  • Jose Yelamos
    • 3
  • Aurélia Noll
    • 1
  • Valérie Schreiber
    • 1
  • Françoise Dantzer
    • 4
  1. 1.FRE3211 du CNRS, École Supérieure de Biotechnologie deGroupe Poly(ADP-ribosyl)ation et Intégrité du GénomeStrasbourgFrance
  2. 2.CEA/DSV/iRCM/SCSR, Laboratoire de RadiopathologieUMR967 INSERM-Université Paris VIIFontenay-aux-RosesFrance
  3. 3.Department of Immunology, Cancer Research ProgramIMIM-hospital del MarBarcelonaSpain
  4. 4.IREBS-UMR7242ESBSIllkrichFrance

Personalised recommendations