Laboratory-Scale Purification of a Recombinant E-Cadherin-IgG Fc Fusion Protein That Provides a Cell Surface Matrix for Extended Culture and Efficient Subculture of Human Pluripotent Stem Cells

Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The culture of human pluripotent stem cells under defined conditions most commonly relies on the use of Matrigel as a substrate upon which the cells remain in an undifferentiated state. Matrigel is a complex mixture of extracellular matrices and growth factors derived from mouse Engelbreth–Holm–Swarm ­sarcoma cells. The complexity and lot-to-lot variation of Matrigel preparations has prompted the search for more defined substrates that can support pluripotent stem cell culture. A recombinant human E-cadherin-IgG Fc domain fusion protein (E-cad-Fc) has recently been shown to be extremely efficient in facilitating the culture of human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells under completely defined conditions. This fusion protein is particularly appealing because binding requires the cellular expression of E-cadherin, which is one hallmark of pluripotent stem cells, and so the substrate is selective of an undifferentiated cell state. In addition, cells can be removed from the substrate using gentle enzyme-free dissociation buffers containing chelating reagents, which ensures maintenance of cell surface epitopes and high cell viability during subculture. Here, we provide a detailed protocol for the purification of the E-cad-Fc substrate.

Key words

Human pluripotent stem cells Feeder-free Defined culture conditions Recombinant E-cadherin surface 

References

  1. 1.
    Lerou, P.H., Daley, G.Q. (2005) Therapeutic potential of embryonic stem cells. Blood Rev 19, 321–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., Thomson, J.A. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Stewart, M.H., Bendall, S.C., Bhatia, M. (2008) Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. J Mol Med 86, 875–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., Carpenter, M.K. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19, 971–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Kleinman, H.K., McGarvey, M.L., Liotta, L.A., Robey, P.G., Tryggvason, K., Martin, G.R. (1982) Isolation and characterization of type IV procollagen, laminin, and heparin sulfate proteoglycan from the EHS sarcoma. Biochemistry 21, 6188–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Kleinman, H.K., McGarvey, M.L., Hassell, J.R., Star, V.L., Cannon, F.B., Laurie, G.W., Martin, G.R. (1986) Basement membrane complexes with biological activity. Biochemistry 25, 312–18.PubMedCrossRefGoogle Scholar
  9. 9.
    Vukicevic, S., Kleinman, H.K., Luyten, F.P., Roberts, A.B., Roche, N.S., Reddi, A.H. (1992) Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202, 1–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Miyazaki, T., Futaki, S., Hasegawa, K., Kawasaki, M., Sanzen, N., Hayashi, M., Kawase, E., Sekiguchi, K., Nakatsuji, N., Suemori, H. (2008) Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 375, 27–32.PubMedCrossRefGoogle Scholar
  11. 11.
    Rodin, S., Domogatskaya, A., Ström, S., Hansson, E.M., Chien, K.R., Inzunza, J., Hovatta, O., Tryggvason, K. (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28, 611–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Furue, M.K., Na, J., Jackson, J.P., Okamoto, T., Jones, M., Baker, D., Hata, R., Moore, H.D., Sato, J.D., Andrews, P.W. (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci USA 105, 13409–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Braam, S.R., Zeinstra, L., Litjens, S., Ward-van Oostwaard, D., van den Brink, S., van Laake, L., Lebrin, F., Kats, P., Hochstenbach, R., Passier, R., Sonnenberg, A., Mummery, C.L. (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αvβ5 integrin. Stem Cells 26, 2257–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Melkoumian, Z., Weber, J.L., Weber, D.M., Fadeev, A.G., Zhou, Y., Dolley-Sonneville, P., Yang, J., Qiu, L., Priest, C.A., Shogbon, C., Martin, A.W., Nelson, J., West, P., Beltzer, J.P., Pal, S., Brandenberger, R. (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28, 606–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Derda, R., Musah, S., Orner, B.P., Klim, J.R., Li, L., Kiessling, L.L. (2010) High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J Am Chem Soc 132, 1289–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Villa-Diaz, L.G., Nandivada, H., Ding, J., Nogueira-de-Souza, N.C., Krebsbach, P.H., O’Shea, K.S., Lahann, J., Smith, G.D. (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28, 581–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Nagaoka, M., Si-Tayeb, K., Akaike, T., Duncan, S.A. (2010) Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev Biol 10, 60.PubMedCrossRefGoogle Scholar
  18. 18.
    Takeichi, M. (1994) Morphogenetic roles of ­classic cadherins. Curr Opin Cell Biol 7, 619–27.CrossRefGoogle Scholar
  19. 19.
    Gumbiner, B.M. (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6, 622–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Larue, L., Antos, C., Butz, S., Huber, O., Delmas, V., Dominis, M., Kemler, R. (1996) A role for cadherins in tissue formation. Development 122, 3185–94.PubMedGoogle Scholar
  21. 21.
    Dang, S.M., Gerecht-Nir, S., Chen, J., Itskovitz-Eldor, J., Zandstra, P.W. (2004) Controlled, scalable embryonic stem cell differentiation culture. Stem Cells 22, 275–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Eastham, A.M., Spencer, H., Soncin, F., Ritson, S., Merry, C.L., Stern, P.L., Ward, C.M. (2007) Epithelial-mesenchymal transition events ­during human embryonic stem cell differentiation. Cancer Res 67, 11254–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Ullmann, U., In’t Veld, P., Gilles, C., Sermon, K., De Rycke, M., Van de Velde, H., Van Steirteghem, A., Liebaers, I. (2007) Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol Hum Reprod 13, 21–32.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  1. 1.Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations