Advertisement

Generation of iPS Cells from Human Umbilical Vein Endothelial Cells by Lentiviral Transduction and Their Differentiation to Neuronal Lineage

  • Maria V. Shutova
  • Ilya V. Chestkov
  • Alexandra N. Bogomazova
  • Maria A. Lagarkova
  • Sergey L. Kiselev
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Substantial progress has been made in somatic cell reprogramming through ectopic expression of four transcription factors to yield induced pluripotent stem (iPS) cells. We have used the robust viral-based modification procedure to generate iPS cells from human umbilical vein endothelial cells (HUVEC), an attractive source of the cells for reprogramming. Our method uses a multistep protocol in which reprogramming cells are selected by culturing in defined conditions on Matrigel, which may facilitate potential clinical applications. HUVEC-derived iPS cells show pluripotency in vivo and can differentiate into many cell types in vitro, including neuronal lineages. Here we describe an efficient protocol for generating iPS cells from HUVEC and differentiating these iPS cells into neurons.

Key words

Induced pluripotent stem cells Endothelial cells Differentiation Neural cells 

References

  1. 1.
    Takahashi K., Yamanaka S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–76.PubMedCrossRefGoogle Scholar
  2. 2.
    Maherali N., Ahfeldt T., Rigamonti A. et al. (2008) A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Okita K., Nakagawa M., Hyenjong H. et al. (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Meissner A., Wernig M., Jaenisch R. (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25, 1177–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Blelloch R., Venere M., Yen J. et al. (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Nakagawa M., Koyanagi M., Tanabe K. et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim J.B., Zaehres H., Wu G. et al. (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Kim J.B., Sebastiano V., Wu G., Araúzo-Bravo M.J. et al. (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhou H., Wu S., Joo J. et al. (2009) Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins. Cell Stem Cell 4, 381–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Patel M., Yang S. (2010) Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev Rep 6, 367–80.CrossRefGoogle Scholar
  11. 11.
    Maherali N., Hochedlinger K. (2008) Guide­lines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3, 595–605.PubMedCrossRefGoogle Scholar
  12. 12.
    Yu J., Vodyanik M.A., Smuga-Otto K. et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Aasen T., Raya A., Barrero M.J. et al. (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26, 1276–84.PubMedCrossRefGoogle Scholar
  14. 14.
    Loh Y.H., Agarwal S., Park I.H. et al. (2009) Generation of induced pluripotent stem cells from human blood. Blood 113, 5476–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim J.B., Sebastiano V., Wu G. et al. (2009) Oct4-Induced Pluripotency in Adult Neural Stem Cells. Cell 136, 411–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Utikal J., Maherali N., Kulalert W. et al. (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. Journal of Cell Science, 122, 3502–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Nagler A., Korenstein-Ilan A., Amiel A. et al. (2004) Granulocyte colony-stimulating factor generates epigenetic and genetic alterations in lymphocytes of normal volunteer donors of stem cells. Exp Hematol 32, 122–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Baudin B., Bruneel A., Bosselut N. et al. (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2, 481–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Lagarkova M.A., Shutova M.V., Bogomazova A.N. et al. (2010) Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell Cycle 9, 937–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Lin G., Martins-Taylor K., Xu R.H. (2010) Human embryonic stem cell derivation, maintenance, and differentiation to trophoblast. Methods Mol Biol 636, 1–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Chambers S.M., Fasano C.A., Papapetrou E.P. et al. (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27, 275–80.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  • Maria V. Shutova
    • 1
  • Ilya V. Chestkov
    • 1
  • Alexandra N. Bogomazova
    • 1
  • Maria A. Lagarkova
    • 1
  • Sergey L. Kiselev
    • 1
  1. 1.Vavilov Institute of General Genetics RASMoscowRussia

Personalised recommendations