Advertisement

Functional Surface Attachment in a Sandwich Geometry of GFP-Labeled Motor Proteins

  • Volker Bormuth
  • Felix Zörgibel
  • Erik SchäfferEmail author
  • Jonathon Howard
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 778)

Abstract

Molecular motors perform work in cells by moving in an ATP-dependent manner along filamentous tracks. In vitro, the mechanical action of such motor proteins can be investigated by attaching the molecules to surfaces in the so-called gliding or bead assays. Surface attachment protocols have to be used that do not interfere with the function of the molecule. Here, we describe a sandwich protocol that preserves functionality. The protocol can be used for a large variety of proteins, in particular kinesin motor proteins that are GFP-tagged.

Key words

Motor protein Surface attachment Kinesin Kip3p Gliding assay Bead assay 

Notes

Acknowledgments

The authors acknowledge the input of members of the Howard, Schäffer, and Diez labs in the development of these protocols.

References

  1. 1.
    Allen, R. D., Weiss, D. G., Hayden, J. H., Brown, D. T., Fujiwake, H., and Simpson, M. (1985) Gliding movement of and bidirectional transport along single native microtubules­ from squid axoplasm – Evidence for an active role of microtubules in cytoplasmic transport. Journal of Cell Biology 100, 1736–1752.PubMedCrossRefGoogle Scholar
  2. 2.
    Vale, R. D., Schnapp, B. J., Reese, T. S., and Sheetz, M. P. (1985) Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant-axon. Cell 40, 559–569.PubMedCrossRefGoogle Scholar
  3. 3.
    Howard, J., Hudspeth, A. J., and Vale, R. D. (1989) Movement of microtubules by single kinesin molecules. Nature 342, 154–158.PubMedCrossRefGoogle Scholar
  4. 4.
    Block, S. M., Goldstein, L. S. B., and Schnapp, B. J. (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352.PubMedCrossRefGoogle Scholar
  5. 5.
    Lawrence, C. J., Dawe, R. K., Christie, K. R., Cleveland, D. W., Dawson, S. C., Endow, S. A., et al. (2004) A standardized kinesin nomenclature. Journal of Cell Biology 167, 19–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Bormuth, V., Varga, V., Howard, J., and Schäffer, E. (2009) Protein Friction Limits Diffusive and Directed Movements of Kinesin Motors on Microtubules. Science 325, 870–873.PubMedCrossRefGoogle Scholar
  7. 7.
    Varga, V., Leduc, C., Bormuth, V., Diez, S., and Howard, J. (2009) Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization. Cell 138, 1174–1183.PubMedCrossRefGoogle Scholar
  8. 8.
    Nitzsche, B., Bormuth, V., Brauer, C., Howard, J., Ionov, L., Kerssemakers, J., Korten, T., Leduc, C., Ruhnow, F., and Diez, S. Studying Kinesin Motors by Optical 3D-Nanometry in Gliding Motility Assays. Methods in Cell Biology 95, 247–271.Google Scholar
  9. 9.
    Gell, C., Bormuth, V., Brouhard, G. J., Cohen, D. N., Diez, S., Friel, C. T., Helenius, J., Nitzsche, B., Petzold, H., Ribbe, J., Schäffer, E., Stear, J. H., Trushko, A., Varga, V., Widlund, P. O., Zanic, M., and Howard, J. Microtubule Dynamics Reconstituted In Vitro and Imaged by Single-Molecule Fluorescence Microscopy. Methods in Cell Biology 95, 221–245.Google Scholar
  10. 10.
    Schäffer, E., Norrelykke, S. F., and Howard, J. (2007) Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir 23, 3654–3665.PubMedCrossRefGoogle Scholar
  11. 11.
    Bormuth, V., Howard, J., and Schäffer, E. (2007) LED illumination for video-enhanced DIC imaging of single microtubules. Journal of Microscopy-Oxford 226, 1–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Volker Bormuth
    • 1
  • Felix Zörgibel
    • 2
  • Erik Schäffer
    • 3
    Email author
  • Jonathon Howard
    • 1
  1. 1.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
  2. 2.Institute for Materials Science, TU-DresdenMax Bergmann Center of BiomaterialsDresdenGermany
  3. 3.Nanomechanics Group, Biotechnology Center, TU-DresdenDresdenGermany

Personalised recommendations