Preparation of Dual-Color Polarity-Marked Fluorescent Microtubule Seeds

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 777)

Abstract

Assaying microtubule dynamics in vitro requires stabilized nucleation centers, a method to immobilize individual microtubules onto a surface, and a specialized microscope to image the microtubule. Microtubules are polar structures with different dynamic properties at the plus and minus ends. However, the dynamics of the two ends can be modified by the addition of other proteins, such as microtubule plus-end-tracking proteins (+TIPs), so that it becomes impossible to distinguish the microtubule polarity by measuring the differences in the dynamic properties of the ends alone. In this chapter, we describe a method for labeling tubulin protein with N-hydroxysuccinimide ester fluorescent dyes, enabling the formation of dual-color polarity-marked stable microtubule seeds that can be immobilized onto a microscopic cover glass for imaging by fluorescence microscopy. These seeds create functional nucleation centers for the growth of dynamic microtubules.

Key words

N-hydroxysuccinimide ester Succinimidyl ester Tubulin Microtubule In vitro microtubule dynamics assay Polarity-marked microtubules Guanylyl-(alpha, beta)-methylene-diphosphonate 

References

  1. 1.
    Walker, R. A., O’Brien, E. T., Pryer, N. K., Soboeiro, M. F., Voter, W. A., Erickson, H. P., and Salmon, E. D. (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, J. Cell Biol. 107, 1437–1448.PubMedCrossRefGoogle Scholar
  2. 2.
    Bieling, P., Laan, L., Schek, H., Munteanu, E. L., Sandblad, L., Dogterom, M., Brunner, D., and Surrey, T. (2007) Reconstitution of a microtubule plus-end tracking system in vitro, Nature 450, 1100–1105.PubMedCrossRefGoogle Scholar
  3. 3.
    Hyman, A., Drechsel, D., Kellogg, D., Salser, S., Sawin, K., Steffen, P., Wordeman, L., and Mitchison, T. (1991) Preparation of modified tubulins, Methods Enzymol. 196, 478–485.PubMedCrossRefGoogle Scholar
  4. 4.
    Howard, J., and Hyman, A. A. (1993) Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence microscopy, Methods Cell Biol. 39, 105–113.PubMedCrossRefGoogle Scholar
  5. 5.
    Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N., and Mitchison, T. J. (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP, Mol. Biol. Cell 3, 1155–1167.PubMedGoogle Scholar
  6. 6.
    Katsuki, M., Drummond, D. R., Osei, M., and Cross, R. A. (2009) Mal3 masks catastrophe events in Schizosaccharomyces pombe microtubules by inhibiting shrinkage and promoting rescue, J. Biol. Chem. 284, 29246–29250.PubMedCrossRefGoogle Scholar
  7. 7.
    Ray, S., Meyhofer, E., Milligan, R. A., and Howard, J. (1993) Kinesin follows the microtubule’s protofilament axis, J. Cell Biol. 121, 1083–1093.PubMedCrossRefGoogle Scholar
  8. 8.
    Weingarten, M. D., Suter, M. M., Littman, D. R., and Kirschner, M. W. (1974) Properties of the depolymerization products of microtubules from mammalian brain, Biochemistry 13, 5529–5537.PubMedCrossRefGoogle Scholar
  9. 9.
    Himes, R. H., Burton, P. R., and Gaito, J. M. (1977) Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins, J. Biol. Chem. 252, 6222–6228.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre for Mechanochemical Cell Biology, Warwick Medical SchoolUniversity of WarwickCoventryUK
  2. 2.Laboratory for Molecular BiophysicsRIKEN Brain Science InstituteWako CityJapan

Personalised recommendations