Purification of Tubulin from the Fission Yeast Schizosaccharomyces pombe

  • Douglas R. DrummondEmail author
  • Susan Kain
  • Anthony Newcombe
  • Christina Hoey
  • Miho Katsuki
  • Robert A. Cross
Part of the Methods in Molecular Biology book series (MIMB, volume 777)


The fission yeast Schizosaccharomyces pombe is an attractive source of tubulin for biochemical experiments as it contains few tubulin isoforms and is amenable to genetic manipulation. We describe the preparation of milligram quantities of highly purified native tubulin from S. pombe suitable for use in microtubule dynamics assays as well as structural and other biochemical studies. S. pombe cells are grown in bulk in a fermenter and then lysed using a bead mill. The soluble protein fraction is bound to anion-exchange chromatography resin by batch binding, packed in a ­chromatography column and eluted by a salt gradient. The tubulin-containing fraction is ammonium sulphate precipitated to further concentrate and purify the protein. A round of high-resolution anion-exchange chromatography is carried out before a cycle of polymerisation and depolymerisation to select functional tubulin. Gel filtration is used to remove residual contaminants before a final desalting step. The purified tubulin is concentrated, and then frozen and stored in liquid nitrogen.

Key words

S. pombe Yeast Tubulin Purification Microtubule dynamics 



We gratefully acknowledge the Medical Research Council (G0200542), Association for International Cancer Research (09-0221), and Marie Curie Cancer Care for supporting this study.


  1. 1.
    Castoldi M, Popov AV. (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Mitchison T, Kirschner M. (1984) Microtubule assembly nucleated by isolated centrosomes. Nature 312:232–237.PubMedCrossRefGoogle Scholar
  3. 3.
    Luduena RF. (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275.PubMedCrossRefGoogle Scholar
  4. 4.
    Bode CJ, Gupta ML, Suprenant KA, Himes RH. (2003) The two alpha-tubulin isotypes in budding yeast have opposing effects on microtubule dynamics in vitro. EMBO reports 4:94–99.PubMedCrossRefGoogle Scholar
  5. 5.
    Newton CN, DeLuca JG, Himes RH, Miller HP, Jordan MA, Wilson L. (2002) Intrinsically slow dynamic instability of HeLa cell microtubules in vitro. J Biol Chem 277:42456–42462.PubMedCrossRefGoogle Scholar
  6. 6.
    Detrich HW, 3rd, Parker SK, Williams RC, Jr., Nogales E, Downing KH. (2000) Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes. J Biol Chem 275:37038–37047.Google Scholar
  7. 7.
    Lewis SA, Tian G, Cowan NJ. (1997) The alpha- and beta-tubulin folding pathways. Trends Cell Biol 7:479–484.PubMedCrossRefGoogle Scholar
  8. 8.
    Shah C, Xu CZ, Vickers J, Williams R. (2001) Properties of microtubules assembled from mammalian tubulin synthesized in Escherichia coli. Biochemistry 40:4844–4852.PubMedCrossRefGoogle Scholar
  9. 9.
    Jang MH, Kim J, Kalme S, et al. (2008) Cloning, purification, and polymerization of Capsicum annuum recombinant alpha and beta tubulin. Bioscience, biotechnology, and biochemistry 72:1048–1055.PubMedCrossRefGoogle Scholar
  10. 10.
    Sontag CA, Staley JT, Erickson HP. (2005) In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J Cell Biol 169:233–238.PubMedCrossRefGoogle Scholar
  11. 11.
    Schlieper D, Oliva MA, Andreu JM, Lowe J. (2005) Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci USA 102:9170–9175.PubMedCrossRefGoogle Scholar
  12. 12.
    Barnes G, Louie KA, Botstein D. (1992) Yeast proteins associated with microtubules in vitro and in vivo. Mol Biol Cell 3:29–47.PubMedGoogle Scholar
  13. 13.
    Kilmartin JV. (1981) Purification of yeast tubulin by self-assembly in vitro. Biochemistry 20:3629–3633.PubMedCrossRefGoogle Scholar
  14. 14.
    Davis A, Sage CR, Wilson L, Farrell KW. (1993) Purification and biochemical characterization of tubulin from the budding yeast Saccharomyces cerevisiae. Biochemistry 32:8823–8835.PubMedCrossRefGoogle Scholar
  15. 15.
    Dougherty CA, Sage CR, Davis A, Farrell KW. (2001) Mutation in the beta-tubulin signature motif suppresses microtubule GTPase activity and dynamics, and slows mitosis. Biochemistry 40:15725–15732.PubMedCrossRefGoogle Scholar
  16. 16.
    Sage CR, Davis AS, Dougherty CA, Sullivan K, Farrell KW. (1995) beta-Tubulin mutation suppresses microtubule dynamics in vitro and slows mitosis in vivo. Cell Motil Cytoskeleton 30:285–300.PubMedCrossRefGoogle Scholar
  17. 17.
    Sage CR, Dougherty CA, Davis AS, Burns RG, Wilson L, Farrell KW. (1995) Site-directed mutagenesis of putative GTP-binding sites of yeast beta- tubulin: evidence that alpha-, beta-, and gamma-tubulins are atypical GTPases [published erratum appears in Biochemistry 1995 Dec 26;34(51):16870]. Biochemistry 34:7409–7419.PubMedCrossRefGoogle Scholar
  18. 18.
    Gupta ML, Jr., Bode CJ, Georg GI, Himes RH. (2003) Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin. Proc Natl Acad Sci USA 100:6394–6397.PubMedCrossRefGoogle Scholar
  19. 19.
    Gupta ML, Jr., Bode CJ, Thrower DA, et al. (2002) beta-Tubulin C354 Mutations that Severely Decrease Microtubule Dynamics Do Not Prevent Nuclear Migration in Yeast. Mol Biol Cell 13:2919–2932.PubMedCrossRefGoogle Scholar
  20. 20.
    Uchimura S, Oguchi Y, Katsuki M, et al. (2006) Identification of a strong binding site for kinesin on the microtubule using mutant analysis of tubulin. EMBO J 25:5932–5941.PubMedCrossRefGoogle Scholar
  21. 21.
    Uchimura S, Oguchi Y, Hachikubo Y, Ishiwata S, Muto E. (2010) Key residues on microtubule responsible for activation of kinesin ATPase. EMBO J 29:1167–1175.PubMedCrossRefGoogle Scholar
  22. 22.
    Toda T, Adachi Y, Hiraoka Y, Yanagida M. (1984) Identification of the pleiotropic cell division cycle gene NDA2 as one of two different alpha-tubulin genes in Schizosaccharomyces pombe. Cell 37:233–242.PubMedCrossRefGoogle Scholar
  23. 23.
    Hiraoka Y, Toda T, Yanagida M. (1984) The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39:349–358.PubMedCrossRefGoogle Scholar
  24. 24.
    Wood V, Gwilliam R, Rajandream MA, et al. (2002) The genome sequence of Schizo­saccharomyces pombe. Nature 415:871–880.PubMedCrossRefGoogle Scholar
  25. 25.
    Hertz-Fowler C, Peacock CS, Wood V, et al. (2004) GeneDB: a resource for prokaryotic and eukaryotic organisms. Nucleic Acids Res 32:D339–343.PubMedCrossRefGoogle Scholar
  26. 26.
    Hagan IM. (1998) The fission yeast microtubule cytoskeleton. J Cell Sci 111:1603–1612.PubMedGoogle Scholar
  27. 27.
    Alfa CE, Hyams JS. (1991) Microtubules in the fission yeast Schizosaccharomyces pombe contain only the tyrosinated form of alpha-tubulin. Cell Motil Cytoskeleton 18:86–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Sawin KE, Tran PT. (2006) Cytoplasmic microtubule organization in fission yeast. Yeast 23:1001–1014.PubMedCrossRefGoogle Scholar
  29. 29.
    Piel M, Tran PT. (2009) Cell shape and cell division in fission yeast. Curr Biol 19:R823–827.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakamura M, Zhou XZ, Lu KP. (2001) Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr Biol 11:1062–1067.PubMedCrossRefGoogle Scholar
  31. 31.
    Sandblad L, Busch KE, Tittmann P, Gross H, Brunner D, Hoenger A. (2006) The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 127:1415–1424.PubMedCrossRefGoogle Scholar
  32. 32.
    Bieling P, Laan L, Schek H, et al. (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450:1100–1105.PubMedCrossRefGoogle Scholar
  33. 33.
    Adachi Y, Toda T, Niwa O, Yanagida M. (1986) Differential expressions of essential and nonessential alpha-tubulin genes in Schizosaccharomyces pombe. Mol Cell Biol 6:2168–2178.PubMedGoogle Scholar
  34. 34.
    Braun M, Drummond DR, Cross RA, McAinsh AD. (2009) The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nat Cell Biol 11:724–730.PubMedCrossRefGoogle Scholar
  35. 35.
    des Georges A, Katsuki M, Drummond DR, Osei M, Cross RA, Amos LA. (2008) Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nature structural & molecular biology 15:1102–1108.Google Scholar
  36. 36.
    Katsuki M, Drummond DR, Osei M, Cross RA. (2009) Mal3 masks catastrophe events in Schizosaccharomyces pombe microtubules by inhibiting shrinkage and promoting rescue. J Biol Chem 284:29246–29250.PubMedCrossRefGoogle Scholar
  37. 37.
    Rex M. C. Dawson DCE, William H. Elliott, K. M. Jones. (1969) Data for biochemical Research. Oxford University Press, Oxford.Google Scholar
  38. 38.
    Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RM. (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477.PubMedCrossRefGoogle Scholar
  39. 39.
    Blanchard JS. (1984) Buffers for enzymes. Methods Enzymol 104:404–414.PubMedCrossRefGoogle Scholar
  40. 40.
    Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ. (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell 3:1155–1167.PubMedGoogle Scholar
  41. 41.
    Walker RA, O’Brien ET, Pryer NK, et al. (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448.PubMedCrossRefGoogle Scholar
  42. 42.
    Moreno S, Klar A, Nurse P. (1991) Molecular genetic analysis of fission yeast Schizo­saccharomyces pombe. Methods Enzymol 194:795–823.PubMedCrossRefGoogle Scholar
  43. 43.
    Gill SC, von Hippel PH. (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326.PubMedCrossRefGoogle Scholar
  44. 44.
    Abramoff MD, Magelhas PJ, Ram SJ. (2004) Image processing with ImageJ. Biophotonics International 11:36–42.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Douglas R. Drummond
    • 1
    Email author
  • Susan Kain
    • 2
  • Anthony Newcombe
    • 3
  • Christina Hoey
    • 4
  • Miho Katsuki
    • 1
  • Robert A. Cross
    • 1
  1. 1.Centre for Mechanochemical Cell Biology, Warwick Medical SchoolUniversity of WarwickCoventryUK
  2. 2.Lister HospitalStevenageUK
  3. 3.Pfizer Biotechnology IrelandRingaskiddyIreland
  4. 4.Institute of Structural Molecular BiologyBirkbeck CollegeLondonUK

Personalised recommendations