Identification and Characterization of Androgen Response Elements

  • Reinhilde De Bruyn
  • Rita Bollen
  • Frank ClaessensEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 776)


The androgen receptor (AR) has a DNA-binding domain that consists of two zinc coordinating modules. While residues of the first module make most of the sequence-specific contacts, the second module functions as a homodimerization interface (1). This explains why the androgen response elements (AREs) are organized as two 5′-AGAACA-3′-like motifs separated by three basepairs (2). AREs can be located near the promoters of androgen-responsive genes, but are also at considerable distances either upstream or downstream, so the initial steps in locating AREs can be challenging. Traditionally, AR-binding sites were identified by DNA cellulose competition assays (3) or by in vitro footprinting (4). However, the advent of the chromatin immunoprecipitation assays made it possible to identify genomic fragments to which the AR binds either directly or indirectly (5). To enable identification of AREs in such genomic fragments, we developed an in silico approach involving a weight matrix based on all known AREs (6). This will point out candidate AREs, which will still need experimental validation involving a direct interaction assay and a transactivation assay. We describe here the methods most fit to describe an ARE: the electrophoretic mobility shift and the transactivation assays.

Key words

Androgen receptor DNA binding domain androgen response element reporter gene assay electrophoretic mobility shift assay 


  1. 1.
    Shaffer, P.L., Jivan, A., Dollins, D.E., Claessens, F., and Gewirth, D.T. (2004) Structural basis of androgen receptor binding to selective androgen response elements. Proc. Natl. Acad. Sci. USA 101, 4758–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Claessens., F., Alen, P., Devos, A., Peeters, B., Verhoeven, G., and Rombauts, W. (1996) The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. J. Biol. Chem. 271, 19013–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Claessens, F., Rushmere, N.K., Davies, P., Celis, L., Peeters, B., and Rombauts, W.A. (1990) Sequence-specific binding of androgen-receptor complexes to prostatic binding protein genes. Mol. Cell. Endocrinol. 74, 203–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Claessens, F., Celis, L., Peeters, B., Heyns, W., Verhoeven, G., and Rombauts W. (1989) Functional characterization of an androgen response element in the first intron of the C3(1) gene of prostatic binding protein. Biochem. Biophys. Res. Commun. 164, 833–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang, Q., Li, W., Liu, X.S., Carroll, J.S., Jänne, O.A., Keeton, E.K., Chinnaiyan, A.M., Pienta, K.J., and Brown M. (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell 27, 380–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Denayer, S., Helsen, C., Thorrez, L., Haelens, A., and Claessens, F. (2010) The rules of DNA recognition by the androgen receptor. Mol. Endocrinol. 24, 898–913.PubMedCrossRefGoogle Scholar
  7. 7.
    Haelens, A., Verrijdt, G., Callewaert, L., Peeters, B., Rombauts, W., and Claessens F. (2001) Androgen-receptor-specific DNA binding to an element in the first exon of the human secretory component gene. Biochem. J. 353, 611–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Alen, P., Claessens, F., Verhoeven, G., Rombauts, W., and Peeters, B. (1999) The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol. Cell. Biol. 19, 6085–97.PubMedGoogle Scholar
  9. 9.
    Verrijdt, G., Schauwaers, K., Haelens, A., Rombauts, W., and Claessens, F. (2002) Functional interplay between two response elements with distinct binding characteristics dictates androgen specificity of the mouse sex-limited protein enhancer. J. Biol. Chem. 277, 35191–201.PubMedCrossRefGoogle Scholar
  10. 10.
    Moehren, U., Denayer, S., Podvinec, M., Verrijdt, G., and Claessens, F. (2008) Identification of androgen-selective androgen-response elements in the human aquaporin-5 and Rad9 genes. Biochem. J. 411, 679–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Turatsinze, J.V., Thomas-Chollier, M., Derance, M., and van Helden, J. (2008) Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nat. Protoc. 3, 1578–88PubMedCrossRefGoogle Scholar
  12. 12.
    Schoenmakers, E., Alen, P., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W., and Claessens, F. (1999) Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. Biochem. J. 341, 515–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, New York, NY.Google Scholar
  14. 14.
    Schauwaers, K., De Gendt, K., Saunders, P.T., Atanassova, N., Haelens, A., Callewaert, L., Moehren, U., Swinnen, J.V., Verhoeven, G., Verrijdt, G., and Claessens, F. (2007) Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model. Proc. Natl. Acad. Sci. USA 104, 4961–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Reinhilde De Bruyn
    • 1
  • Rita Bollen
    • 2
  • Frank Claessens
    • 3
    Email author
  1. 1.Department of Molecular Cell Biology and TherapeuticsSt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of Molecular Cell BiologyK.U. LeuvenLeuvenBelgium
  3. 3.Molecular Endocrinology Laboratory, Department of Molecular Cell BiologyK.U. LeuvenLeuvenBelgium

Personalised recommendations