Global Identification of Androgen Response Elements

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 776)

Abstract

Chromatin immunoprecipitation (ChIP) is an invaluable tool in the study of transcriptional regulation. ChIP methods require both a priori knowledge of the transcriptional regulators which are important for a given biological system and high-quality specific antibodies for these targets. The androgen receptor (AR) is known to play essential roles in male sexual development, in prostate cancer and in the function of many other AR-expressing cell types (e.g. neurons and myocytes). As a ligand-activated transcription factor the AR also represents an endogenous, inducible system to study transcriptional biology. Therefore, ChIP studies of the AR can make use of treatment contrast experiments to define its transcriptional targets. To date several studies have mapped AR binding sites using ChIP in combination with genome tiling microarrays (ChIP-chip) or direct sequencing (ChIP-seq), mainly in prostate cancer cell lines and with varying degrees of genomic coverage. These studies have provided new insights into the DNA sequences to which the AR can bind, identified AR cooperating transcription factors, mapped thousands of potential AR regulated genes and provided insights into the biological processes regulated by the AR. However, further ChIP studies will be required to fully characterise the dynamics of the AR-regulated transcriptional programme, to map the occupancy of different AR transcriptional complexes which result in different transcriptional output and to delineate the transcriptional networks downstream of the AR.

Key words

Nuclear hormone receptor androgen receptor chromatin immunoprecipitation (ChIP) high-throughput sequencing genomic tiling microarray transcription hormone cancer 

Notes

Acknowledgements

C.E.M. is a postdoctoral researcher funded by a Cancer Research UK Programme Grant and I.G.M is a CRUK core-funded associate scientist. The authors are grateful and thank Samantha Cheung for help with illustrations and use of the ChemDraw application.

References

  1. 1.
    Cheung, H. H., Lee, T. L., Davis, A. J., Taft, D. H., Rennert, O. M., and Chan, W. Y. (2010) Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer, Br J Cancer 102, 419–427.Google Scholar
  2. 2.
    Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome, Cell 129, 823–837.PubMedCrossRefGoogle Scholar
  3. 3.
    Carroll, J. S., Meyer, C. A., Song, J., Li, W., Geistlinger, T. R., Eeckhoute, J., Brodsky, A. S., Keeton, E. K., Fertuck, K. C., Hall, G. F., Wang, Q., Bekiranov, S., Sementchenko, V., Fox, E. A., Silver, P. A., Gingeras, T. R., Liu, X. S., and Brown, M. (2006) Genome-wide analysis of estrogen receptor binding sites, Nat Genet 38, 1289–1297.PubMedCrossRefGoogle Scholar
  4. 4.
    Massie, C. E., Adryan, B., Barbosa-Morais, N. L., Lynch, A. G., Tran, M. G., Neal, D. E., and Mills, I. G. (2007) New androgen receptor genomic targets show an interaction with the ETS1 transcription factor, EMBO Rep 8, 871–878.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang, Q., Li, W., Zhang, Y., Yuan, X., Xu, K., Yu, J., Chen, Z., Beroukhim, R., Wang, H., Lupien, M., Wu, T., Regan, M. M., Meyer, C. A., Carroll, J. S., Manrai, A. K., Janne, O. A., Balk, S. P., Mehra, R., Han, B., Chinnaiyan, A. M., Rubin, M. A., True, L., Fiorentino, M., Fiore, C., Loda, M., Kantoff, P. W., Liu, X. S., and Brown, M. (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer, Cell 138, 245–256.PubMedCrossRefGoogle Scholar
  6. 6.
    Bolton, E. C., So, A. Y., Chaivorapol, C., Haqq, C. M., Li, H., and Yamamoto, K. R. (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor, Genes Dev 21, 2005–2017.PubMedCrossRefGoogle Scholar
  7. 7.
    Dahl, J. A., Reiner, A. H., and Collas, P. (2009) Fast genomic muChIP-chip from 1,000 cells, Genome Biol 10, R13.PubMedCrossRefGoogle Scholar
  8. 8.
    Acevedo, L. G., Iniguez, A. L., Holster, H. L., Zhang, X., Green, R., and Farnham, P. J. (2007) Genome-scale ChIP-chip analysis using 10,000 human cells, BioTechniques 43, 791–797.PubMedCrossRefGoogle Scholar
  9. 9.
    Johnson, D. S., Mortazavi, A., Myers, R. M., and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions, Science 316, 1497–1502.PubMedCrossRefGoogle Scholar
  10. 10.
  11. 11.
    Schmidt, D., Wilson, M. D., Spyrou, C., Brown, G. D., Hadfield, J., and Odom, D. T. (2009) ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions, Methods (San Diego, Calif) 48, 240–248.Google Scholar
  12. 12.
    Takayama, K., Kaneshiro, K., Tsutsumi, S., Horie-Inoue, K., Ikeda, K., Urano, T., Ijichi, N., Ouchi, Y., Shirahige, K., Aburatani, H., and Inoue, S. (2007) Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis, Oncogene 26, 4453–4463.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, Q., Li, W., Liu, X. S., Carroll, J. S., Janne, O. A., Keeton, E. K., Chinnaiyan, A. M., Pienta, K. J., and Brown, M. (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth, Mol Cell 27, 380–392.PubMedCrossRefGoogle Scholar
  14. 14.
    Ponzielli, R., Boutros, P. C., Katz, S., Stojanova, A., Hanley, A. P., Khosravi, F., Bros, C., Jurisica, I., and Penn, L. Z. (2008) Optimization of experimental design parameters for high-throughput chromatin immunoprecipitation studies, Nucleic Acids Res 36, e144.PubMedCrossRefGoogle Scholar
  15. 15.
    Johnson, D. S., Li, W., Gordon, D. B., Bhattacharjee, A., Curry, B., Ghosh, J., Brizuela, L., Carroll, J. S., Brown, M., Flicek, P., Koch, C. M., Dunham, I., Bieda, M., Xu, X., Farnham, P. J., Kapranov, P., Nix, D. A., Gingeras, T. R., Zhang, X., Holster, H., Jiang, N., Green, R. D., Song, J. S., McCuine, S. A., Anton, E., Nguyen, L., Trinklein, N. D., Ye, Z., Ching, K., Hawkins, D., Ren, B., Scacheri, P. C., Rozowsky, J., Karpikov, A., Euskirchen, G., Weissman, S., Gerstein, M., Snyder, M., Yang, A., Moqtaderi, Z., Hirsch, H., Shulha, H. P., Fu, Y., Weng, Z., Struhl, K., Myers, R. M., Lieb, J. D., and Liu, X. S. (2008) Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets, Genome Res 18, 393–403.PubMedCrossRefGoogle Scholar
  16. 16.
    Ji, X., Li, W., Song, J., Wei, L., and Liu, X. S. (2006) CEAS: cis-regulatory element annotation system, Nucleic Acids Res 34, W551–W554.PubMedCrossRefGoogle Scholar
  17. 17.
    Peng, S., Alekseyenko, A. A., Larschan, E., Kuroda, M. I., and Park, P. J. (2007) Normalization and experimental design for ChIP-chip data, BMC Bioinformatics 8, 219.PubMedCrossRefGoogle Scholar
  18. 18.
    Scacheri, P. C., Crawford, G. E., and Davis, S. (2006) Statistics for ChIP-chip and DNase hypersensitivity experiments on NimbleGen arrays, Methods Enzymol 411, 270–282.PubMedCrossRefGoogle Scholar
  19. 19.
    Toedling, J., Sklyar, O., and Huber, W. (2007) Ringo–an R/Bioconductor package for analyzing ChIP-chip readouts, BMC Bioinformatics 8, 221.PubMedCrossRefGoogle Scholar
  20. 20.
    Toedling, J., and Huber, W. (2008) Analyzing ChIP-chip data using bioconductor, PLoS Comput Biol 4, e1000227.PubMedCrossRefGoogle Scholar
  21. 21.
    Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O. L., He, A., Marra, M., Snyder, M., and Jones, S. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing, Nat Methods 4, 651–657.PubMedCrossRefGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
  25. 25.
    Nowak, D. E., Tian, B., and Brasier, A. R. (2005) Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation, BioTechniques 39, 715–725.PubMedCrossRefGoogle Scholar
  26. 26.
    West, A. G., Huang, S., Gaszner, M., Litt, M. D., and Felsenfeld, G. (2004) Recruitment of histone modifications by USF proteins at a vertebrate barrier element, Mol Cell 16, 453–463.PubMedCrossRefGoogle Scholar
  27. 27.
    http://www.chiponchip.org/Antibody/chip.html. Compendium of ChIP grade antibodies.
  28. 28.
    http://www.abcam.com/index.html?c=917. Abcam ChIP grade antibodies.
  29. 29.
  30. 30.
    http://www.cellsignal.com/technologies/chip.html. Cell Signalling ChIP antibodies.
  31. 31.
  32. 32.
  33. 33.
  34. 34.
    Quail, M. A., Kozarewa, I., Smith, F., Scally, A., Stephens, P. J., Durbin, R., Swerdlow, H., and Turner, D. J. (2008) A large genome center’s improvements to the Illumina sequencing system, Nat Methods 5, 1005–1010.PubMedCrossRefGoogle Scholar
  35. 35.
    Pepke, S., Wold, B., and Mortazavi, A. (2009) Computation for ChIP-seq and RNA-seq studies, Nat Methods 6, S22–S32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Cancer Research UK, Cambridge Research InstituteCambridgeUK
  2. 2.Uro-Oncology Research GroupUniversity of Oslo, Biotechnology CentreOsloNorway
  3. 3.Centre for Molecular Medicine (Norway), Nordic EMBL PartnershipUniversity of OsloOsloNorway

Personalised recommendations