Chloroplast Research in Arabidopsis pp 161-185

Part of the Methods in Molecular Biology book series (MIMB, volume 775) | Cite as

Chloroplast Phenomics: Systematic Phenotypic Screening of Chloroplast Protein Mutants in Arabidopsis


As part of a project to analyze chloroplast functional networks systematically, we have subjected mutants in >3,200 nuclear genes predicted to encode chloroplast-targeted proteins in Arabidopsis thaliana ( to parallel phenotypic assays. Detailed methods are presented for the various assays being used in this project to study chloroplast biology. These include morphological analysis of plants, chloroplasts, and seeds using controlled vocabulary. Metabolites synthesized in the chloroplast such as starch, amino acids, and fatty acids are analyzed in groups according to their chemical properties. As an indicator for the relative composition of seed storage oil and proteins, the carbon and nitrogen contents are determined by an elemental analyzer. The methods in this chapter describe how the assays are configured to run in relatively high throughput, maximizing data quality.

Key words

Amino acid Seed composition Chloroplast Chlorophyll fluorescence Fatty acid Genotyping Morphology Starch Systems biology Reverse genetics Phenomics 


  1. 1.
    Lu, Y., Savage, L. J., Ajjawi, I., Imre, K. M., Yoder, D. W., Benning, C., DellaPenna, D., Ohlrogge, J., Osteryoung, K. W., Weber, A. P. M., Wilkerson, C. G., and Last, R. L. (2008) New connections across pathways and cellular processes: industrialized mutant screening reveals novel associations between diverse phenotypes in Arabidopsis. Plant Physiol. 146, 1482–1500.PubMedCrossRefGoogle Scholar
  2. 2.
    Sussman, M. R., Amasino, R. M., Young, J. C., Krysan, P. J., and Austin-Phillips, S. (2000) The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant Physiol. 124, 1465–1467.PubMedCrossRefGoogle Scholar
  3. 3.
    Sessions, A., Burke, E., Presting, G., Aux, G., McElver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., Clarke, J. D., Cotton, D., Bullis, D., Snell, J., Miguel, T., Hutchison, D., Kimmerly, B., Mitzel, T., Katagiri, F., Glazebrook, J., Law, M., and Goff, S. A. (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14, 2985–2994.PubMedCrossRefGoogle Scholar
  4. 4.
    Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H. M., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W. L., Berry, C. C., and Ecker, J. R. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.PubMedCrossRefGoogle Scholar
  5. 5.
    Kuromori, T., Hirayama, T., Kiyosue, Y., Takabe, H., Mizukado, S., Sakurai, T., Akiyama, K., Kamiya, A., Ito, T., and Shinozaki, K. (2004) A collection of 11,800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J. 37, 897–905.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Malley, R. C., and Ecker, J. R. (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J. 61, 928–940.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuromori, T., Wada, T., Kamiya, A., Yuguchi, M., Yokouchi, T., Imura, Y., Takabe, H., Sakurai, T., Akiyama, K., Hirayama, T., Okada, K., and Shinozaki, K. (2006) A trial of phenome analysis using 4000 Ds-insertional mutants in gene-coding regions of Arabidopsis. Plant J. 47, 640–651.PubMedCrossRefGoogle Scholar
  8. 8.
    Ajjawi, I., Lu, Y., Savage, L. J., Bell, S. M., and Last, R. L. (2010) Large-scale reverse genetics in Arabidopsis: case studies from the Chloroplast 2010 Project. Plant Physiol. 152, 529–540.PubMedCrossRefGoogle Scholar
  9. 9.
    Myouga, F., Akiyama, K., Motohashi, R., Kuromori, T., Ito, T., Iizumi, H., Ryusui, R., Sakurai, T., and Shinozaki, K. (2010) The Chloroplast Function Database: a large-scale collection of Arabidopsis Ds/Spm- or T-DNA-tagged homozygous lines for nuclear-encoded chloroplast proteins, and their systematic phenotype analysis. Plant J. 61, 529–542.PubMedCrossRefGoogle Scholar
  10. 10.
    Lu, Y., and Sharkey, T. D. (2006) The importance of maltose in transitory starch breakdown. Plant Cell Environ. 29, 353–366.PubMedCrossRefGoogle Scholar
  11. 11.
    Yu, T. S., Kofler, H., Hausler, R. E., Hille, D., Flügge, U. I., Zeeman, S. C., Smith, A. M., Kossmann, J., Lloyd, J., Ritte, G., Steup, M., Lue, W. L., Chen, J., and Weber, A. (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13, 1907–1918.PubMedGoogle Scholar
  12. 12.
    Jander, G., Norris, S. R., Joshi, V., Fraga, M., Rugg, A., Yu, S. X., Li, L. L., and Last, R. L. (2004) Application of a high-throughput HPLC-MS/MS assay to Arabidopsis mutant screening; evidence that threonine aldolase plays a role in seed nutritional quality. Plant J. 39, 465–475.PubMedCrossRefGoogle Scholar
  13. 13.
    Gu, L. P., Jones, A. D., and Last, R. L. (2010) Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant. Plant J. 61, 579–590.PubMedCrossRefGoogle Scholar
  14. 14.
    Gu, L., Jones, A. D., and Last, R. L. (2007) LC-MS/MS assay for protein amino acids and metabolically related compounds for large-scale screening of metabolic phenotypes. Anal. Chem. 79, 8067–8075.PubMedCrossRefGoogle Scholar
  15. 15.
    Ohlrogge, J., and Browse, J. (1995) Lipid biosynthesis. Plant Cell 7, 957–970.PubMedGoogle Scholar
  16. 16.
    Somerville, C., Browse, J., Jaworski, J. G., and Ohlrogge, J. (2000) Lipids. In, Biochemistry and Molecular Biology of Plants (Buchanan, R. B., Gruissem, W., and Jones, R., eds.) American Society of Plant Physiology Press, Rockville, MD, USA.Google Scholar
  17. 17.
    Browse, J., McCourt, P. J., and Somerville, C. R. (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal. Biochem. 152, 141–145.PubMedCrossRefGoogle Scholar
  18. 18.
    Osteryoung, K. W., Stokes, K. D., Rutherford, S. M., Percival, A. L., and Lee, W. Y. (1998) Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell 10, 1991–2004.PubMedGoogle Scholar
  19. 19.
    Ruuska, S. A., Schwender, J., and Ohlrogge, J. B. (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 136, 2700–2709.PubMedCrossRefGoogle Scholar
  20. 20.
    Baud, S., Boutin, J. P., Miquel, M., Lepiniec, L., and Rochat, C. (2002) An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol. Biochem. 40, 151–160.CrossRefGoogle Scholar
  21. 21.
    Li, Y. H., Beisson, F., Pollard, M., and Ohlrogge, J. (2006) Oil content of Arabidopsis seeds: The influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67, 904–915.PubMedCrossRefGoogle Scholar
  22. 22.
    Less, H., and Galili, G. (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol. 147, 316–330.PubMedCrossRefGoogle Scholar
  23. 23.
    Caspar, T., Lin, T. P., Kakefuda, G., Benbow, L., Preiss, J., and Somerville, C. (1991) Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol. 95, 1181–1188.PubMedCrossRefGoogle Scholar
  24. 24.
    Maxwell, K., and Johnson, G. N. (2000) Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51, 659–668.PubMedCrossRefGoogle Scholar
  25. 25.
    Müller, P., Li, X. P., and Niyogi, K. K. (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558–1566.Google Scholar
  26. 26.
    Kramer, D. M., Johnson, G., Kiirats, O., and Edwards, G. E. (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 79, 209–218.PubMedCrossRefGoogle Scholar
  27. 27.
    Lu, Y., Hall, D. A., and Last, R. L. (2011). A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana. Plant Cell. First Published on May 17, 2011; doi: 10.1105/tpc.111.085456.Google Scholar
  28. 28.
    Lu, Y., Savage, L. J., Larson, M. D., Wilkerson, C. G., and Last, R. L. (2011). Choloroplast 2010: a database for large-scale phenotypic screening of Arabidopsis mutants. Plant Physiol. 155, 1589–1600.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biological SciencesWestern Michigan UniversityKalamazooUSA
  2. 2.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA
  3. 3.Department of Biochemistry and Molecular Biology, and Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations