Advertisement

Studying Chloroplast Protein Interactions In Vitro: An Overview of the Available Methods

  • Joanna Tripp
  • Enrico SchleiffEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 775)

Abstract

The analysis of protein–protein interactions is essential for the understanding of the molecular events in enzymatic pathways, signaling cascades, or transport processes in the chloroplast. A large variety of methods are available, which range from qualitative assays allowing for screening for new interaction partners, and semiquantitative assays allowing for a rough description of the interaction between two partners, to quantitative assays that permit detailed determination of kinetic and thermodynamic parameters. We summarize the available technologies, describe their range of applications and pitfalls, and give some examples from chloroplast research. The described techniques are generic and thereby important and useful to study the interaction network of proteins in Arabidopsis thaliana. In addition, we refer the reader to detailed protocols published elsewhere for each method.

Key words

Chloroplast Protein–protein interactions Protein transport 

References

  1. 1.
    Chou, M.-L., Chu, C.-C., Chen, L. J., Akita, M., and Li, H.-M. (2006) Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J. Cell Biol. 175, 893–900.PubMedCrossRefGoogle Scholar
  2. 2.
    Bédard J, Kubis S, Bimanadham S, and Jarvis P. (2007) Functional similarity between the chloroplast translocon component, Tic40, and the human co-chaperone, Hsp70-interacting protein (Hip). J. Biol. Chem. 282, 21404–21414.PubMedCrossRefGoogle Scholar
  3. 3.
    Pasch, J. P., Nickelsen, J., and Schünemann, D. (2005) The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl. Microbiol. Biotechnol. 69, 440–447.PubMedCrossRefGoogle Scholar
  4. 4.
    Sprinzak, E., Sattath, S., and Margalit, H. (2003) How reliable are experimental protein-protein interaction data? J. Mol. Biol. 327, 919–923.PubMedCrossRefGoogle Scholar
  5. 5.
    Maple, J., and Møller, S. G. (2007) Yeast two-hybrid screening. Methods Mol. Biol. 362, 207–223.CrossRefGoogle Scholar
  6. 6.
    Garcia-Cuellar, M. P., Mederer, D., and Slany, R. K. (2009) Identification of protein interaction partners by the yeast two-hybrid system. Methods Mol. Biol. 538, 347–367.PubMedCrossRefGoogle Scholar
  7. 7.
    Kittanakom, S., Chuk, M., Wong, V., Snyder, J., Edmonds, D., Lydakis, A., Zhang, Z., Auerbach, D., and Stagljar, I. (2009) Analysis of membrane protein complexes using the split-ubiquitin membrane yeast two-hybrid (MYTH) system. Methods Mol. Biol. 548, 247–271.PubMedCrossRefGoogle Scholar
  8. 8.
    Stagljar, I., and Fields, S. (2002) Analysis of membrane protein interactions using yeast-based technologies. Trends Biochem. Sci. 27, 559–563.PubMedCrossRefGoogle Scholar
  9. 9.
    Rahim, G., Bischof, S., Kessler, F., and Agne, B. (2009) In vivo interaction between atToc33 and atToc159 GTP-binding domains demonstrated in a plant split-ubiquitin system. J. Exp. Bot. 60, 257–267.PubMedCrossRefGoogle Scholar
  10. 10.
    Brymora, A., Valova. V. A., and Robinson, P. J. (2004) Protein-protein interactions identified by pull-down experiments and mass spectrometry. Curr. Protoc. Cell Biol. 22, 17.5.1–17.5.51.Google Scholar
  11. 11.
    Kaboord, B. and Perr, M. (2008) Isolation of proteins and protein complexes by immunoprecipitation. Methods Mol. Biol. 424, 349–364.PubMedCrossRefGoogle Scholar
  12. 12.
    Firestone, G. L., and Winguth, S. D. (1990) Immunoprecipitation of proteins. Methods Enzymol. 182, 688–700.CrossRefGoogle Scholar
  13. 13.
    Swaffield, J. C., and Johnston, S. A. (1996) affinity purification of proteins binding to GST fusion proteins. Curr. Protoc. Mol. Biol. 33, 20.2.1–20.2.10.Google Scholar
  14. 14.
    Ren, L., Emery, D., Kaboord, B., Chang, E., and Qoronfleh, M. W. (2003) Improved immunomatrix methods to detect protein:protein interactions. J. Biochem. Biophys. Methods 57, 143–157.PubMedCrossRefGoogle Scholar
  15. 15.
    Nielsen, E., M. Akita, J. Davila-Aponte, and K. Keegstra (1997) Stable association of chloroplastic precursors with protein-translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J. 16, 935–946.PubMedCrossRefGoogle Scholar
  16. 16.
    Kouranov, A., Chen, X., Fuks, B., and Schnell, D.J. (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J. Cell Biol. 143, 991–1002.PubMedCrossRefGoogle Scholar
  17. 17.
    Becker, T., Jelic, M., Vojta, A., Radunz, A., Soll, J., and Schleiff E (2004) Preprotein recognition by the Toc complex. EMBO J. 23, 520–530.PubMedCrossRefGoogle Scholar
  18. 18.
    May, T., and Soll, J. (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12, 53–64.PubMedGoogle Scholar
  19. 19.
    Qbadou, S., Becker, T., Mirus, O., Tews, I., Soll, J., and Schleiff, E. (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J. 25, 18361847.PubMedCrossRefGoogle Scholar
  20. 20.
    Ivanova, Y., Smith, M. D., Chen, K., and Schnell, D. J. (2004) Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol. Biol. Cell. 15, 3379–3392.PubMedCrossRefGoogle Scholar
  21. 21.
    Smith, M. D., Hiltbrunner, A., Kessler, F., and Schnell, D. J. (2002) The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. J. Cell Biol. 159, 833–843.PubMedCrossRefGoogle Scholar
  22. 22.
    Inaba, T., Li, M., Alvarez-Huerta, M., Kessler, F., and Schnell, D. J. (2003) atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J. Biol. Chem. 278, 38617–38627.PubMedCrossRefGoogle Scholar
  23. 23.
    Smith, M. D., Rounds, C. M., Wang, F., Chen, K., Afitlhile, M., and Schnell, D.J. (2004). atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J. Cell Biol. 165, 323334.PubMedCrossRefGoogle Scholar
  24. 24.
    Inaba, T., Alvarez-Huerta, M. Li, M., Bauer, J., Ewers, C., Kessler, F., and Schnell, D. J. (2005) Arabidopsis tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell 17, 1482–1496.PubMedCrossRefGoogle Scholar
  25. 25.
    Schleiff, E., Motzkus, M., and Soll, J. (2002) Chloroplast protein import inhibition by a soluble factor from wheat germ lysate. Plant Mol. Biol. 50, 177–185.PubMedCrossRefGoogle Scholar
  26. 26.
    Bauer, J., Hiltbrunner, A., Weibel, P., Vidi, P. A., Alvarez-Huerta, M., Smith, M. D., Schnell, D. J., and Kessler, F. (2002) Essential role of the G-domain in targeting of the protein import receptor atToc159 to the chloroplast outer membrane. J. Cell Biol. 159, 845–854.PubMedCrossRefGoogle Scholar
  27. 27.
    Wallas, T. R., Smith, M. D., Sanchez-Nieto, S., and Schnell, D. J. (2003) The roles of toc34 and toc75 in targeting the toc159 preprotein receptor to chloroplasts. J. Biol. Chem. 278, 44289–44297.PubMedCrossRefGoogle Scholar
  28. 28.
    Reineke, U., Sabat, R., Kramer, A., Stigler, R. D., Seifert, M., Michel, T., Volk, H. D., and Schneider-Mergener, J. (1996) Mapping protein-protein contact sites using cellulose-bound peptide scans. Mol. Divers. 1, 141–148.PubMedCrossRefGoogle Scholar
  29. 29.
    Rüdiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16,1501–1507.PubMedCrossRefGoogle Scholar
  30. 30.
    Koenig, P., Oreb, M., Höfle, A., Kaltofen, S., Rippe, K., Sinning, I., Schleiff, E., and Tews, I. (2008) The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures. Structure 16, 585–596.PubMedCrossRefGoogle Scholar
  31. 31.
    Oreb, M., Höfle, A., Mirus, O., and Schleiff, E. (2008) Phosphorylation regulates the assembly of chloroplast import machinery. J. Exp. Bot. 59, 2309–2316.PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt von Braun, S., and Schleiff, E. (2008) The chloroplast outer membrane protein CHUP1 interacts with actin and profilin. Planta 227, 1151–1159.PubMedCrossRefGoogle Scholar
  33. 33.
    Cregg, J. M., Tolstorukov, I., Kusari, A., Sunga, J., Madden, K., and Chappell, T. (2009) Expression in the yeast Pichia pastoris. Methods Enzymol. 463, 169–189.PubMedCrossRefGoogle Scholar
  34. 34.
    Jarvis, D. L. (2009) Baculovirus-insect cell expression systems. Methods Enzymol. 463, 191–222.Google Scholar
  35. 35.
    Qbadou, S., Becker, T., Bionda, T., Reger, K., Ruprecht, M., Soll, J., and Schleiff, E. (2007) Toc64-a preprotein-receptor at the outer membrane with bipartide function. J. Mol. Biol. 367, 1330–1346.PubMedCrossRefGoogle Scholar
  36. 36.
    Dowler S, Kular G, and Alessi DR. (2002) Protein lipid overlay assay. Sci STKE 129, pl6.Google Scholar
  37. 37.
    Wunder T, Martin R, Löffelhardt W, Schleiff E, and Steiner JM. (2007) The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC Evol. Biol. 7, 236.PubMedCrossRefGoogle Scholar
  38. 38.
    Beattie J. (1998) Size-exclusion chromatography. Identification of interacting proteins. Methods Mol. Biol. 88, 65–69.Google Scholar
  39. 39.
    Irvine, G. B. (2000) Determination of molecular size by size-exclusion chromatography (gel filtration). Curr. Protoc. Cell Biol. 6, 5.5.1–5.5.16.Google Scholar
  40. 40.
    Folta-Stogniew, E. (2006) Oligomeric states of proteins determined by size-exclusion chromatography coupled with light scattering, absorbance, and refractive index detectors. Methods Mol. Biol. 328, 97–112.PubMedGoogle Scholar
  41. 41.
    Yeh, Y. H., Kesavulu, M. M., Li, H. M., Wu, S. Z., Sun, Y. J., Konozy, E. H., and Hsiao, C. D. (2007) Dimerization is important for the GTPase activity of chloroplast translocon components atToc33 and psToc159. J. Biol. Chem. 282, 13845–13853.PubMedCrossRefGoogle Scholar
  42. 42.
    Koenig, P., Oreb, M., Rippe, K., Muhle-Goll, C., Sinning, I., Schleiff, E., and Tews, I. (2008) On the significance of Toc-GTPase homodimers. J. Biol. Chem. 283, 23104–23112.PubMedCrossRefGoogle Scholar
  43. 43.
    Bionda, T., Koenig, P., Oreb, M., Tews, I., and Schleiff, E. (2008) pH sensitivity of the GTPase Toc33 as a regulatory circuit for protein translocation into chloroplasts. Plant Cell Physiol. 49, 1917–1921.PubMedCrossRefGoogle Scholar
  44. 44.
    Falk, S., Ravaud, S., Koch, J., and Sinning, I. (2010) The C terminus of the Alb3 membrane insertase recruits cpSRP43 to the thylakoid membrane. J. Biol. Chem. 285, 5954–5962.PubMedCrossRefGoogle Scholar
  45. 45.
    Schleiff, E., Soll, J., Küchler, M., Kühlbrandt, W., and Harrer, R. (2003) Characterization of the translocon of the outer envelope of chloroplasts. J. Cell Biol. 160, 541–551.PubMedCrossRefGoogle Scholar
  46. 46.
    Scott, D. J., Harding, S. E., and Rowe, A. J. (2005) Analytical Ultracentrifugation: Techniques and Methods. Royal Society of Chemistry, Cambridge, UK.CrossRefGoogle Scholar
  47. 47.
    Brown, P. H., Balbo, A., and Schuck, P. (2008) Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. Curr. Protoc. Immunol. 81, 18.15.1–18.15.39.Google Scholar
  48. 48.
    Dam, J., and Schuck, P. (2004) Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods Enzymol. 384, 185–212.PubMedCrossRefGoogle Scholar
  49. 49.
    Lebowitz, J., Lewis, M. S., and Schuck, P. (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067–2079.PubMedCrossRefGoogle Scholar
  50. 50.
    Reddick, L. E., Vaughn, M. D., Wright, S. J., Campbell, I. M , and Bruce, B. D. (2007) In vitro comparative kinetic analysis of the chloroplast Toc GTPases. J. Biol. Chem. 282, 11410–11426.PubMedCrossRefGoogle Scholar
  51. 51.
    Schuck, P. (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 320, 104–124.PubMedCrossRefGoogle Scholar
  52. 52.
    Fleming, K. G. (2008) Determination of membrane protein molecular weight using sedimentation equilibrium analytical ultracentrifugation. Curr. Protoc. Protein Sci. 53, 7.12.1–7.12.13.Google Scholar
  53. 53.
    Spolar, R. S., and Record, M. T. Jr. (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784.PubMedCrossRefGoogle Scholar
  54. 54.
    Velázquez-Campoy, A., Ohtaka, H., Nezami, A., Muzammil, S., and Freire, E. (2004) Isothermal titration calorimetry. Curr. Protoc. Cell Biol. 23, 17.8.1–17.8.24.Google Scholar
  55. 55.
    Freyer, M. W., and Lewis, E. A. (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol. 84, 79–113.PubMedCrossRefGoogle Scholar
  56. 56.
    Velazquez-Campoy, A., and Freire, E. (2006) Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat. Protoc. 1, 186–191.PubMedCrossRefGoogle Scholar
  57. 57.
    Sivaraja, V., Kumar, T. K., Leena, P. S., Chang, A. N., Vidya, C., Goforth, R. L., Rajalingam, D., Arvind, K., Ye, J. L., Chou, J., Henry, R., and Yu, C. (2005) Three-dimensional solution structures of the chromodomains of cpSRP43. J. Biol. Chem. 280, 41465–41471.PubMedCrossRefGoogle Scholar
  58. 58.
    Kathir, K. M., Rajalingam, D., Sivaraja, V., Kight, A., Goforth, R. L., Yu, C., Henry, R., and Kumar, T. K. (2008) Assembly of chloroplast signal recognition particle involves structural rearrangement in cpSRP43. J. Mol. Biol. 381, 49–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Stengel, K. F., Holdermann, I., Cain, P., Robinson, C., Wild, K., and Sinning, I. (2008) Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43. Science. 321, 253–256.PubMedCrossRefGoogle Scholar
  60. 60.
    George, A. J.T. (1999) Measurement of the kinetics of biomolecular interactions using the IAsys resonant mirror biosensor. Curr. Protoc. Immunol. 33, 18.5.1–18.5.19.Google Scholar
  61. 61.
    Jason-Moller L., Murphy M., and Bruno J. (2006) Overview of Biacore systems and their applications. Curr. Protoc. Protein Sci. 45, 19.13.1–19.13.14.Google Scholar
  62. 62.
    Schuck P, and Zhao H. (2010) The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol. Biol. 627, 15–54.Google Scholar
  63. 63.
    Stenlund, P., Babcock, G. J., Sodroski, J., and Myszka, D. G. (2003) Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal Biochem. 316, 243–250.PubMedCrossRefGoogle Scholar
  64. 64.
    Karlsson, R. (1999) Affinity analysis of non-steady-state data obtained under mass transport limited conditions using BIAcore technology. J. Mol. Recognit. 12, 285–292.PubMedCrossRefGoogle Scholar
  65. 65.
    Hermkes, R., Funke, S., Richter, C., Kuhlmann, J., and Schünemann, D. (2006). The alpha-helix of the second chromodomain of the 43 kDa subunit of the chloroplast signal recognition particle facilitates binding to the 54 kDa subunit. FEBS Lett. 580, 3107–3111.PubMedCrossRefGoogle Scholar
  66. 66.
    Schleiff, E., Soll, J., Sveshnikova, N., Tien, R., Wright, S., Dabney-Smith, C., Subramanian, C., and Bruce, B. D. (2002) Structural and guanosine triphosphate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34. Biochemistry 41, 19341946.PubMedCrossRefGoogle Scholar
  67. 67.
    Jelic, M., Soll, J., and Schleiff, E. (2003) Two Toc34 homologues with different properties. Biochemistry 42, 5906–5916.PubMedCrossRefGoogle Scholar
  68. 68.
    Jameson, D. M., Croney, J. C., and Moens, P. D. (2003) Fluorescence: basic concepts, practical aspects, and some anecdotes. Methods Enzymol. 360, 1–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Yan, Y., and Marriott, G. (2003) Analysis of protein interactions using fluorescence technologies. Curr. Opin. Chem. Biol. 7, 635–640.PubMedCrossRefGoogle Scholar
  70. 70.
    Johnson, A. E. (2005) Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes. Traffic 6, 1078–1092.PubMedCrossRefGoogle Scholar
  71. 71.
    Schleiff, E., Schmitz, A., McIlhinney, R. A. J., Manenti, S., and Vergeres, G. (1996) Myristoylation does not modulate the properties of MARCKS-related protein (MRP) in solution. Journal Biol. Chem. 271, 26794–26802.CrossRefGoogle Scholar
  72. 72.
    Jaru-Ampornpan, P., Shen, K., Lam, V. Q., Ali, M., Doniach, S., Jia, T. Z., and Shan, S.-O. (2010) ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit. Nature Struct. Mol. Biol. 17, 696–703.CrossRefGoogle Scholar
  73. 73.
    Sommer, M. S., and Schleiff, E. (2009) Molecular interactions within the plant TOC complex. Biol. Chem. 390, 739–744.PubMedCrossRefGoogle Scholar
  74. 74.
    Roy, R., Hohng, S., and Ha, T. (2008) A practical guide to single-molecule FRET. Nat. Methods 5, 507–516.PubMedCrossRefGoogle Scholar
  75. 75.
    Mickler, M., Hessling, M., Ratzke, C., Buchner, J., and Hugel, T. (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat. Struct. Mol. Biol. 16, 281–286.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhao, Y., Terry, D., Shi, L., Weinstein, H., Blanchard, S. C., and Javitch, J.A. (2010) Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465, 188–193.Google Scholar
  77. 77.
    Hohng, S., Joo, C., and Ha, T. (2004) Single-molecule three-color FRET. Biophys J. 87, 1328–1337.Google Scholar
  78. 78.
    Lee, N. K., Kapanidis, A. N., Koh, H. R., Korlann, Y., Ho, S. O., Kim, Y., Gassman, N., Kim, S. K., and Weiss, S. (2007) Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys. J. 92, 303–312.PubMedCrossRefGoogle Scholar
  79. 79.
    Heilemann, M., Tinnefeld, P., Sanchez Mosteiro, G., Garcia Parajo, M., Van Hulst, N. F., and Sauer, M. (2004) Multistep energy transfer in single molecular photonic wires. J. Am. Chem. Soc. 126, 6514–6515.PubMedCrossRefGoogle Scholar
  80. 80.
    Haustein, E., and Schwille, P. (2004) Single-molecule spectroscopic methods. Curr. Opin. Struct. Biol. 14, 531–540.PubMedCrossRefGoogle Scholar
  81. 81.
    Mickler, M., Schleiff, E., and Hugel, T. (2008) From biological towards artificial molecular motors. Chemphyschem 9, 1503–1509.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Molecular Cell Biology of PlantsGoethe-UniversityFrankfurtGermany
  2. 2.Molecular Cell Biology of Plants, Centre of Membrane Proteomics, Cluster of Excellence Macromolecular ComplexesGoethe-UniversityFrankfurtGermany

Personalised recommendations