Molecular Methods for Evolutionary Genetics pp 13-35

Part of the Methods in Molecular Biology book series (MIMB, volume 772) | Cite as

Chromosome Analysis in Invertebrates and Vertebrates

Protocol

Abstract

The revolution in molecular techniques over the last 30 years detracted from many traditional cytological techniques for examining basic biological problems. One of these casualties is the preparation of karyotypes and analysis of chromosomal structure, behaviour, and variation. Recent technology permitting the full sequencing of organisms has highlighted (but does not replace) the importance of understanding chromosomal constitution and karyotype structure, which underpin genome organisation. This chapter provides simple and straightforward protocols for the preparation of chromosome spreads from animals, and more advanced techniques for cell culture and chromosomal banding and hybridisation.

Key words

Chromosomes Invertebrate genetics Cytological techniques Karyology Cell culture Fluorescence in situ hybridisation 

References

  1. 1.
    Pontius JU, Mullikin JC, Smith DR et al (2007) Initial sequence and comparative analysis of the cat genome. Genome Res 17:1675–1689PubMedCrossRefGoogle Scholar
  2. 2.
    Li R, Fan W, Tian G et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 463:311–317PubMedCrossRefGoogle Scholar
  3. 3.
    Genome 10K Community of Scientists (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100:659–674Google Scholar
  4. 4.
    Tait NN, Briscoe DA, Rowell DM (1995) Onychophora–Ancient and modern radiations. Memoirs of the Association of Australian Palaeontologists 18:21–30Google Scholar
  5. 5.
    Rowell DM, Higgins AV, Tait NN et al (1995) Chromosomal evolution in viviparous onychophorans from Australia (Onychophora: Peripatopsidae). J Linn Soc Lond 114:139–153CrossRefGoogle Scholar
  6. 6.
    Rowell DM, Rockman MV, Tait NN (2002) Extensive Robertsonian Rearrangement: Implications for the radiation and biogeography of Planipapillus Reid (Onychophora: Peripatopsidae). J Zool Lond 257:171–179CrossRefGoogle Scholar
  7. 7.
    Czepulkowski B (2001) Analyzing chromosomes. Oxford, UKCrossRefGoogle Scholar
  8. 8.
    Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530PubMedCrossRefGoogle Scholar
  9. 9.
    Wolf K, Quimby MC (1976) Procedures For subculturing fish cells and propagating fish cell lines. Tissue Culture Assoc Manual 2:471–474CrossRefGoogle Scholar
  10. 10.
    Anamthawat-Jonsson K (2003) Preparation of chromosomes from plant leaf meristems for karyotype analysis and in situ hybridization. Methods Cell Sci 25:91–95PubMedCrossRefGoogle Scholar
  11. 11.
    Armstrong SJ, Sanchez-Moran E, Franklin FC (2009) Cytological analysis of Arabidopsis thaliana meiotic chromosomes. Methods Mol Biol 558:131–145PubMedCrossRefGoogle Scholar
  12. 12.
    Rohilla MS, Rao RJ, Tiwari PK (2006) Use of peripheral blood lymphocyte culture in the karyological analysis of Indian freshwater turtles, Lissemys punctata and Geoclemys hamiltoni. Curr Sci 90:1130–1134Google Scholar
  13. 13.
    Spowart G (1994) Mitotic metaphase chromosome preparation from peripheral blood for high resolution. Methods Mol Biol 29:1–10PubMedGoogle Scholar
  14. 14.
    Benn P, Delach J (2008) Human lymphocyte culture and chromosome analysis. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5035
  15. 15.
    Brinkley HJ, Norton HW, Nalbandov AV (1964) Role of hypophysial luteotrophic substance in the function of porcine corpora lutea. Endocrinology 74:9–13PubMedCrossRefGoogle Scholar
  16. 16.
    Hsu TC (1952) Tissue culture studies on human skin. III. Some cytological fractures of the outgrowth of epithelial cells. Tex Rep Biol Med 10:336–352Google Scholar
  17. 17.
    Collodi P, Barnes DW (1990) Mitogenic activity from trout embryos. Proc Natl Acad Sci USA 87:3498–3502PubMedCrossRefGoogle Scholar
  18. 18.
    Crozier RH (1968) An acetic acid dissociation, air-drying technique for insect chromosomes, with aceto-lactic orcein staining. Stain Technol 43:171–173PubMedGoogle Scholar
  19. 19.
    Grutzner F, Himmelbauer H, Paulsen M et al (1999) Comparative mapping of mouse and rat chromosomes by fluorescence in situ hybridization. Genomics 55:306–313PubMedCrossRefGoogle Scholar
  20. 20.
    Grutzner F, Lutjens G, Rovira C et al (1999) Classical and molecular cytogenetics of the pufferfish Tetraodon nigroviridis. Chromosome Res 7:655–662PubMedCrossRefGoogle Scholar
  21. 21.
    Haaf T (2006) Methylation dynamics in the early mammalian embryo: implications of genome reprogramming defects for development. Curr Top Microbiol Immunol 310:13–22PubMedCrossRefGoogle Scholar
  22. 22.
    Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821PubMedCrossRefGoogle Scholar
  23. 23.
    Ezaz T, Valenzuela N, Grutzner F et al (2006) An XX/XY sex microchromosome system in a freshwater turtle, Chelodina longicollis (Testudines: Chelidae) with genetic sex determination. Chromosome Res 14:139–150PubMedCrossRefGoogle Scholar
  24. 24.
    Hardt T, Himmelbauer H, Mann W et al (1999) Towards identification of individual homologous chromosomes: comparative genomic hybridization and spectral karyotyping discriminate between paternal and maternal euchromatin in Mus musculus x M. spretus interspecific hybrids. Cytogenet Cell Genet 86:187–193PubMedCrossRefGoogle Scholar
  25. 25.
    Henegariu O, Dunai J, Chen XN et al (2001) A triple color FISH technique for mouse chromosome identification. Mamm Genome 12:462–465PubMedCrossRefGoogle Scholar
  26. 26.
    Sharp HE, Rowell DM (2007) Unprecedented chromosomal diversity and behavior modify linkage patterns and speciation processes: structural heterozygosity in an Australian spider. J Evol Biol 20:2427–2439PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Evolution, Ecology and Genetics, Research School of BiologyAustralian National UniversityCanberraAustralia
  2. 2.School of Molecular & Biomedical ScienceThe University of AdelaideAdelaideAustralia

Personalised recommendations