MRI in Animal Models of Psychiatric Disorders

  • Dana S. Poole
  • Melly S. Oitzl
  • Louise van der Weerd
Part of the Methods in Molecular Biology book series (MIMB, volume 771)


Here we describe MRI and 1H MRS protocols for the investigation of animal models (mainly mice and rats) of psychiatric disorders. The introduction provides general findings from brain imaging studies in patients with psychiatric diseases and refers to general rules regarding the use of animal models in research. The methods section includes a selection of basic 9.4 T MRI and MRS protocols applicable for the investigation of animal models of psychiatric disorders (T1W, T2W, FLAIR, 1H MRS). The notes section discusses in detail a series of factors that can influence the outcome of the experiment: from animal handling, stress-triggering aspects, and experimental design-related factors to technical aspects that affect T 1 and T 2 measurements.

Key words

Animal MRI 1H NMR spectroscopy methods imaging methods magnetic resonance imaging magnetic resonance spectroscopy methodological considerations mood disorders MRI protocols stress 


  1. 1.
    Abou-Saleh, M. T. (2006) Neuroimaging in psychiatry: an update. J. Psychosom. Res. 61, 289–293.PubMedCrossRefGoogle Scholar
  2. 2.
    Barkley, R. A., Grodzinsky, G., and DuPaul, G. J. (1992) Frontal lobe functions in attention deficit disorder with and without hyperactivity: a review and research report. J. Abnorm. Child Psychol. 20, 163–188.PubMedCrossRefGoogle Scholar
  3. 3.
    Mattes, J. A. (1980) The role of frontal lobe dysfunction in childhood hyperkinesis. Compr. Psychiatry 21, 358–369.PubMedCrossRefGoogle Scholar
  4. 4.
    Bush, G., Valera, E. M., and Seidman, L. J. (2005) Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol. Psychiatry 57, 1273–1284.PubMedCrossRefGoogle Scholar
  5. 5.
    Blumberg, H. P., Kaufman, J., Martin, A., Whiteman, R., Zhang, J. H., Gore, J. C., Charney, D. S., Krystal, J. H., and Peterson, B. S. (2003) Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch. Gen. Psychiatry 60, 1201–1208.PubMedCrossRefGoogle Scholar
  6. 6.
    Chang, K., Karchemskiy, A., Barnea-Goraly, N., Garrett, A., Simeonova, D. I., and Reiss, A. (2005) Reduced amygdalar gray matter volume in familial pediatric bipolar disorder. J. Am. Acad. Child Adolesc. Psychiatry 44, 565–573.PubMedCrossRefGoogle Scholar
  7. 7.
    Rosso, I. M., Killgore, W. D., Cintron, C. M., Gruber, S. A., Tohen, M., and Yurgelun-Todd, D. A. (2007) Reduced amygdala volumes in first-episode bipolar disorder and correlation with cerebral white matter. Biol. Psychiatry 61, 743–749.PubMedCrossRefGoogle Scholar
  8. 8.
    Andreone, N., Tansella, M., Cerini, R., Rambaldelli, G., Versace, A., Marrella, G., Perlini, C., Dusi, N., Pelizza, L., Balestrieri, M., Barbui, C., Nose, M., Gasparini, A., and Brambilla, P. (2007) Cerebral atrophy and white matter disruption in chronic schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 257, 3–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Steen, R. G., Hamer, R. M., and Lieberman, J. A. (2005) Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 30, 1949–1962.PubMedCrossRefGoogle Scholar
  10. 10.
    Molina, V., Sanchez, J., Reig, S., Sanz, J., Benito, C., Santamarta, C., Pascau, J., Sarramea, F., Gispert, J. D., Misiego, J. M., Palomo, T., and Desco, M. (2005) N-acetyl-aspartate levels in the dorsolateral prefrontal cortex in the early years of schizophrenia are inversely related to disease duration. Schizophr. Res. 73, 209–219.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohrmann, P., Siegmund, A., Suslow, T., Spitzberg, K., Kersting, A., Arolt, V., Heindel, W., and Pfleiderer, B. (2005) Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr. Res. 73, 153–157.PubMedCrossRefGoogle Scholar
  12. 12.
    Abbott, C., and Bustillo, J. (2006) What have we learned from proton magnetic resonance spectroscopy about schizophrenia? A critical update. Curr. Opin. Psychiatry 19, 135–139.PubMedCrossRefGoogle Scholar
  13. 13.
    Luders, E., Narr, K. L., Hamilton, L. S., Phillips, O. R., Thompson, P. M., Valle, J. S., Del'Homme, M., Strickland, T., McCracken, J. T., Toga, A. W., and Levitt, J. G. (2009) Decreased callosal thickness in attention-deficit/hyperactivity disorder. Biol. Psychiatry 65, 84–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Seidman, L. J., Valera, E. M., and Makris, N. (2005) Structural brain imaging of attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1263–1272.PubMedCrossRefGoogle Scholar
  15. 15.
    Carrey, N. J., MacMaster, F. P., Gaudet, L., and Schmidt, M. H. (2007) Striatal creatine and glutamate/glutamine in attention-deficit/hyperactivity disorder. J. Child. Adolesc. Psychopharmacol. 17, 11–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Sheline, Y. I., Mittler, B. L., and Mintun, M. A. (2002) The hippocampus and depression. Eur. Psychiatry 17(Suppl 3), 300–305.PubMedCrossRefGoogle Scholar
  17. 17.
    Mervaala, E., Fohr, J., Kononen, M., Valkonen-Korhonen, M., Vainio, P., Partanen, K., Partanen, J., Tiihonen, J., Viinamaki, H., Karjalainen, A. K., and Lehtonen, J. (2000) Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol. Med. 30, 117–125.PubMedCrossRefGoogle Scholar
  18. 18.
    Vakili, K., Pillay, S. S., Lafer, B., Fava, M., Renshaw, P. F., Bonello-Cintron, C. M., and Yurgelun-Todd, D. A. (2000) Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study. Biol. Psychiatry 47, 1087–1090.PubMedCrossRefGoogle Scholar
  19. 19.
    Brown, E. S., D, J. W., Frol, A., Bobadilla, L., Khan, D. A., Hanczyc, M., Rush, A. J., Fleckenstein, J., Babcock, E., and Cullum, C. M. (2004) Hippocampal volume, spectroscopy, cognition, and mood in patients receiving corticosteroid therapy. Biol. Psychiatry 55, 538–545.Google Scholar
  20. 20.
    Bremner, J. D. (2002) Structural changes in the brain in depression and relationship to symptom recurrence. CNS Spectr. 7, 129–130, 135–129.PubMedGoogle Scholar
  21. 21.
    Bremner, J. D., Vythilingam, M., Vermetten, E., Nazeer, A., Adil, J., Khan, S., Staib, L. H., and Charney, D. S. (2002) Reduced volume of orbitofrontal cortex in major depression. Biol. Psychiatry 51, 273–279.PubMedCrossRefGoogle Scholar
  22. 22.
    Bremner, J. D., Narayan, M., Anderson, E. R., Staib, L. H., Miller, H. L., and Charney, D. S. (2000) Hippocampal volume reduction in major depression. Am. J. Psychiatry 157, 115–118.PubMedCrossRefGoogle Scholar
  23. 23.
    Krishnan, K. R., McDonald, W. M., Escalona, P. R., Doraiswamy, P. M., Na, C., Husain, M. M., Figiel, G. S., Boyko, O. B., Ellinwood, E. H., and Nemeroff, C. B. (1992) Magnetic resonance imaging of the caudate nuclei in depression. Preliminary observations. Arch. Gen. Psychiatry 49, 553–557.PubMedGoogle Scholar
  24. 24.
    Drevets, W. C., Price, J. L., Simpson, J. R., Jr., Todd, R. D., Reich, T., Vannier, M., and Raichle, M. E. (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824–827.PubMedCrossRefGoogle Scholar
  25. 25.
    Hirayasu, Y., Shenton, M. E., Salisbury, D. F., Kwon, J. S., Wible, C. G., Fischer, I. A., Yurgelun-Todd, D., Zarate, C., Kikinis, R., Jolesz, F. A., and McCarley, R. W. (1999) Subgenual cingulate cortex volume in first-episode psychosis. Am. J. Psychiatry 156, 1091–1093.PubMedGoogle Scholar
  26. 26.
    Drevets, W. C. (2000) Neuroimaging studies of mood disorders. Biol. Psychiatry 48, 813–829.PubMedCrossRefGoogle Scholar
  27. 27.
    Soares, J. C., and Mann, J. J. (1997) The anatomy of mood disorders – review of structural neuroimaging studies. Biol. Psychiatry 41, 86–106.PubMedCrossRefGoogle Scholar
  28. 28.
    Soares, J. C., and Mann, J. J. (1997) The functional neuroanatomy of mood disorders. J. Psychiatr. Res. 31, 393–432.PubMedCrossRefGoogle Scholar
  29. 29.
    Schuff, N., Neylan, T. C., Fox-Bosetti, S., Lenoci, M., Samuelson, K. W., Studholme, C., Kornak, J., Marmar, C. R., and Weiner, M. W. (2008) Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. Psychiatry Res. 162, 147–157.PubMedCrossRefGoogle Scholar
  30. 30.
    Mohanakrishnan Menon, P., Nasrallah, H. A., Lyons, J. A., Scott, M. F., and Liberto, V. (2003) Single-voxel proton MR spectroscopy of right versus left hippocampi in PTSD. Psychiatry Res. 123, 101–108.PubMedCrossRefGoogle Scholar
  31. 31.
    Neylan, T. C., Schuff, N., Lenoci, M., Yehuda, R., Weiner, M. W., and Marmar, C. R. (2003) Cortisol levels are positively correlated with hippocampal N-acetylaspartate. Biol. Psychiatry 54, 1118–1121.PubMedCrossRefGoogle Scholar
  32. 32.
    Pollack, M. H., Jensen, J. E., Simon, N. M., Kaufman, R. E., and Renshaw, P. F. (2008) High-field MRS study of GABA, glutamate and glutamine in social anxiety disorder: response to treatment with levetiracetam. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 739–743.PubMedCrossRefGoogle Scholar
  33. 33.
    Lyoo, I. K., Yoon, S. J., Musen, G., Simonson, D. C., Weinger, K., Bolo, N., Ryan, C. M., Kim, J. E., Renshaw, P. F., and Jacobson, A. M. (2009) Altered prefrontal glutamate-glutamine-gamma-aminobutyric acid levels and relation to low cognitive performance and depressive symptoms in type 1 diabetes mellitus. Arch. Gen. Psychiatry 66, 878–887.PubMedCrossRefGoogle Scholar
  34. 34.
    Milne, A., MacQueen, G. M., Yucel, K., Soreni, N., and Hall, G. B. (2009) Hippocampal metabolic abnormalities at first onset and with recurrent episodes of a major depressive disorder: a proton magnetic resonance spectroscopy study. Neuroimage 47, 36–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Dawe, G. S., and Ratty, A. K. (2007) The chakragati mouse: a mouse model for rapid in vivo screening of antipsychotic drug candidates. Biotechnol. J. 2, 1344–1352.PubMedCrossRefGoogle Scholar
  36. 36.
    Torres, G., Hallas, B. H., Gross, K. W., Spernyak, J. A., and Horowitz, J. M. (2008) Magnetic resonance imaging and spectroscopy in a mouse model of schizophrenia. Brain Res. Bull. 75, 556–561.PubMedCrossRefGoogle Scholar
  37. 37.
    Luby, E. D., Cohen, B. D., Rosenbaum, G., Gottlieb, J. S., and Kelley, R. (1959) Study of a new schizophrenomimetic drug; sernyl. AMA Arch. Neurol. Psychiatry 81, 363–369.PubMedGoogle Scholar
  38. 38.
    Allen, R. M., and Young, S. J. (1978) Phencyclidine-induced psychosis. Am. J. Psychiatry 135, 1081–1084.PubMedGoogle Scholar
  39. 39.
    Javitt, D. C., and Zukin, S. R. (1991) Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148, 1301–1308.PubMedGoogle Scholar
  40. 40.
    Reynolds, L. M., Cochran, S. M., Morris, B. J., Pratt, J. A., and Reynolds, G. P. (2005) Chronic phencyclidine administration induces schizophrenia-like changes in N-acetylaspartate and N-acetylaspartylglutamate in rat brain. Schizophr. Res. 73, 147–152.PubMedCrossRefGoogle Scholar
  41. 41.
    Kalisch, R., Schubert, M., Jacob, W., Kessler, M. S., Hemauer, R., Wigger, A., Landgraf, R., and Auer, D. P. (2006) Anxiety and hippocampus volume in the rat. Neuropsychopharmacology 31, 925–932.PubMedCrossRefGoogle Scholar
  42. 42.
    Schubert, M. I., Kalisch, R., Sotiropoulos, I., Catania, C., Sousa, N., Almeida, O. F., and Auer, D. P. (2008) Effects of altered corticosteroid milieu on rat hippocampal neurochemistry and structure – an in vivo magnetic resonance spectroscopy and imaging study. J. Psychiatr. Res. 42, 902–912.PubMedCrossRefGoogle Scholar
  43. 43.
    Sartorius, A., Mahlstedt, M. M., Vollmayr, B., Henn, F. A., and Ende, G. (2007) Elevated spectroscopic glutamate/gamma-amino butyric acid in rats bred for learned helplessness. Neuroreport 18, 1469–1473.PubMedCrossRefGoogle Scholar
  44. 44.
    Tkac, I., Henry, P. G., Andersen, P., Keene, C. D., Low, W. C., and Gruetter, R. (2004) Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn. Reson. Med. 52, 478–484.PubMedCrossRefGoogle Scholar
  45. 45.
    Donovan, J., and Brown, P. (2004) Handling and restraint. Curr. Protoc. Neurosci. Appendix 4, Appendix 4D.Google Scholar
  46. 46.
    Pham, K., Nacher, J., Hof, P. R., and McEwen, B. S. (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci. 17, 879–886.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen, Y. C., Galpern, W. R., Brownell, A. L., Matthews, R. T., Bogdanov, M., Isacson, O., Keltner, J. R., Beal, M. F., Rosen, B. R., and Jenkins, B. G. (1997) Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn. Reson. Med. 38, 389–398.PubMedCrossRefGoogle Scholar
  48. 48.
    Karlik, S. J., Fuller, J., and Gelb, A. W. (1986) Anesthetics change tissue proton NMR relaxation. Acta Radiol. Suppl. 369, 500–502.PubMedGoogle Scholar
  49. 49.
    Willis, C. K., Quinn, R. P., McDonell, W. M., Gati, J., Parent, J., and Nicolle, D. (2001) Functional MRI as a tool to assess vision in dogs: the optimal anesthetic. Vet. Ophthalmol. 4, 243–253.PubMedCrossRefGoogle Scholar
  50. 50.
    Weber, R., Ramos-Cabrer, P., Wiedermann, D., van Camp, N., and Hoehn, M. (2006) A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 29, 1303–1310.PubMedCrossRefGoogle Scholar
  51. 51.
    Pawson, P., and Forsyth, S. (2008) Anaesthetic agents. In Maddison, J. E., Page, S. W., and Church, D. B. (Eds.), Small Animal Clinical Pharmacology, 2nd ed., pp. 83–112. Saunders, Edinburgh.CrossRefGoogle Scholar
  52. 52.
    Sicard, K., Shen, Q., Brevard, M. E., Sullivan, R., Ferris, C. F., King, J. A., and Duong, T. Q. (2003) Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J. Cereb. Blood Flow Metab. 23, 472–481.PubMedCrossRefGoogle Scholar
  53. 53.
    Brevard, M. E., Duong, T. Q., King, J. A., and Ferris, C. F. (2003) Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions. Magn. Reson. Imaging. 21, 995–1001.PubMedCrossRefGoogle Scholar
  54. 54.
    Martin, C., Jones, M., Martindale, J., and Mayhew, J. (2006) Haemodynamic and neural responses to hypercapnia in the awake rat. Eur. J. Neurosci. 24, 2601–2610.PubMedCrossRefGoogle Scholar
  55. 55.
    Martin, C., Martindale, J., Berwick, J., and Mayhew, J. (2006) Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 32, 33–48.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhao, F., Jin, T., Wang, P., and Kim, S. G. (2007) Improved spatial localization of post-stimulus BOLD undershoot relative to positive BOLD. Neuroimage 34, 1084–1092.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhao, F., Jin, T., Wang, P., and Kim, S. G. (2007) Isoflurane anesthesia effect in functional imaging studies. Neuroimage 38, 3–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Dashti, M., Geso, M., and Williams, J. (2005) The effects of anaesthesia on cortical stimulation in rats: a functional MRI study. Australas. Phys. Eng. Sci. Med. 28, 21–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Silverman, J., and Muir, W. W., 3rd. (1993) A review of laboratory animal anesthesia with chloral hydrate and chloralose. Lab. Anim. Sci. 43, 210–216.PubMedGoogle Scholar
  60. 60.
    Sommers, M. G., van Egmond, J., Booij, L. H., and Heerschap, A. (2009) Isoflurane anesthesia is a valuable alternative for alpha-chloralose anesthesia in the forepaw stimulation model in rats. NMR Biomed. 22, 414–418.PubMedCrossRefGoogle Scholar
  61. 61.
    Braw, Y., Malkesman, O., Merenlender, A., Dagan, M., Bercovich, A., Lavi-Avnon, Y., and Weller, A. (2009) Divergent maternal behavioral patterns in two genetic animal models of depression. Physiol. Behav. 96, 209–217.PubMedCrossRefGoogle Scholar
  62. 62.
    Spring, S., Lerch, J. P., and Henkelman, R. M. (2007) Sexual dimorphism revealed in the structure of the mouse brain using three-dimensional magnetic resonance imaging. Neuroimage 35, 1424–1433.PubMedCrossRefGoogle Scholar
  63. 63.
    Berl, S., Nunez, R., Colon, A. D., and Clarke, D. D. (1983) Acetylation of synaptosomal protein: inhibition by veratridine. J. Neurochem. 40, 176–183.PubMedCrossRefGoogle Scholar
  64. 64.
    Brenner, E., Sonnewald, U., Schweitzer, A., Andrieux, A., and Nehlig, A. (2007) Hypoglutamatergic activity in the STOP knockout mouse: a potential model for chronic untreated schizophrenia. J. Neurosci. Res. 85, 3487–3493.PubMedCrossRefGoogle Scholar
  65. 65.
    Sibson, N. R., Mason, G. F., Shen, J., Cline, G. W., Herskovits, A. Z., Wall, J. E., Behar, K. L., Rothman, D. L., and Shulman, R. G. (2001) In vivo (13)C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during. J. Neurochem. 76, 975–989.PubMedCrossRefGoogle Scholar
  66. 66.
    Lebon, V., Petersen, K. F., Cline, G. W., Shen, J., Mason, G. F., Dufour, S., Behar, K. L., Shulman, G. I., and Rothman, D. L. (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J. Neurosci. 22, 1523–1531.PubMedGoogle Scholar
  67. 67.
    Shulman, R. G., Rothman, D. L., Behar, K. L., and Hyder, F. (2004) Energetic basis of brain activity: implications for neuroimaging. Trends. Neurosci. 27, 489–495.PubMedCrossRefGoogle Scholar
  68. 68.
    Sonnewald, U., and Kondziella, D. (2003) Neuronal glial interaction in different neurological diseases studied by ex vivo 13C NMR spectroscopy. NMR Biomed. 16, 424–429.PubMedCrossRefGoogle Scholar
  69. 69.
    Taylor, A., McLean, M., Morris, P., and Bachelard, H. (1996) Approaches to studies on neuronal/glial relationships by 13C-MRS analysis. Dev. Neurosci. 18, 434–442.PubMedCrossRefGoogle Scholar
  70. 70.
    Rodrigues, T. B., and Cerdan, S. (2005) A fast and sensitive 1H NMR method to measure the turnover of the H2 hydrogen of lactate. Magn. Reson. Med. 54, 1014–1019.PubMedCrossRefGoogle Scholar
  71. 71.
    Meric, P., Autret, G., Doan, B. T., Gillet, B., Sebrie, C., and Beloeil, J. C. (2004) In vivo 2D magnetic resonance spectroscopy of small animals. MAGMA 17, 317–338.PubMedCrossRefGoogle Scholar
  72. 72.
    Braakman, N., Oerther, T., de Groot, H. J., and Alia, A. (2008) High resolution localized two-dimensional MR spectroscopy in mouse brain in vivo. Magn. Reson. Med. 60, 449–456.PubMedCrossRefGoogle Scholar
  73. 73.
    Kundel, H. L., Schlakman, B., Joseph, P. M., Fishman, J. E., and Summers, R. (1986) Water content and NMR relaxation time gradients in the rabbit kidney. Invest. Radiol. 21, 12–17.PubMedCrossRefGoogle Scholar
  74. 74.
    Ottenweller, J. E., Meier, A. H., Russo, A. C., and Frenzke, M. E. (1979) Circadian rhythms of plasma corticosterone binding activity in the rat and the mouse. Acta Endocrinol. (Copenh) 91, 150–157.Google Scholar
  75. 75.
    Duong, T. Q. (2007) Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats. Brain Res. 1135, 186–194.PubMedCrossRefGoogle Scholar
  76. 76.
    Kiryu, S., Inoue, Y., Watanabe, M., Izawa, K., Shimada, M., Tojo, A., Yoshikawa, K., and Ohtomo, K. (2009) Evaluation of gadoxetate disodium as a contrast agent for mouse liver imaging: comparison with gadobenate dimeglumine. Magn. Reson. Imaging. 27, 101–107.PubMedCrossRefGoogle Scholar
  77. 77.
    Narciso, S. P., Nadziejko, E., Chen, L. C., Gordon, T., and Nadziejko, C. (2003) Adaptation to stress induced by restraining rats and mice in nose-only inhalation holders. Inhal. Toxicol. 15, 1133–1143.PubMedGoogle Scholar
  78. 78.
    Harris, R. B., Gu, H., Mitchell, T. D., Endale, L., Russo, M., and Ryan, D. H. (2004) Increased glucocorticoid response to a novel stress in rats that have been restrained. Physiol. Behav. 81, 557–568.PubMedCrossRefGoogle Scholar
  79. 79.
    Dunn, A. J., and Swiergiel, A. H. (2008) Effects of acute and chronic stressors and CRF in rat and mouse tests for depression. Ann. N. Y. Acad. Sci. 1148, 118–126.PubMedCrossRefGoogle Scholar
  80. 80.
    Swiergiel, A. H., Leskov, I. L., and Dunn, A. J. (2008) Effects of chronic and acute stressors and CRF on depression-like behavior in mice. Behav. Brain Res. 186, 32–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Venkatesan, R., Lin, W., Gurleyik, K., He, Y. Y., Paczynski, R. P., Powers, W. J., and Hsu, C. Y. (2000) Absolute measurements of water content using magnetic resonance imaging: preliminary findings in an in vivo focal ischemic rat model. Magn. Reson. Med. 43, 146–150.PubMedCrossRefGoogle Scholar
  82. 82.
    Tkác, I., Henry, P. G., Andersen, P., Keene, C. D., Low, W. C., and Gruetter, R. (2004) Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn. Reson. Med. 52, 478–484.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dana S. Poole
    • 1
  • Melly S. Oitzl
    • 2
  • Louise van der Weerd
    • 3
  1. 1.Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Division of Medical PharmacologyUniversity of LeidenLeidenThe Netherlands
  3. 3.Department of Radiology, Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations