Essential Techniques for Introducing Medaka to a Zebrafish Laboratory—Towards the Combined Use of Medaka and Zebrafish for Further Genetic Dissection of the Function of the Vertebrate Genome

  • Sean R. Porazinski
  • Huijia Wang
  • Makoto Furutani-Seiki
Part of the Methods in Molecular Biology book series (MIMB, volume 770)

Abstract

The medaka, Oryzias latipes, a small egg-laying freshwater fish, is one of the three vertebrate model organisms in which genome-wide phenotype-driven mutant screens have been carried out. Despite a number of large-scale screens in zebrafish, a substantial number of mutants with new distinct phenotypes were identified in similar large-scale screens in the medaka. This observed difference in phenotype is due to the two species having a unique combination of genetic, biological and evolutional properties. The two genetic models share a whole-genome duplication event over that of tetrapods; however, each has independently specialized or lost the function of one of the two paralogues. The two fish species complement each other as genetic systems as straightforward comparison of phenotypes, ease of side-by-side analysis using the same techniques and simple and inexpensive husbandry of mutants make these small teleosts quite powerful in combination. Furthermore, both have draft genome sequences and bioinformatic tools available that facilitate further genetic dissection including whole-genome approaches. Together with the gene-driven approach to generate gene knockout mutants of the fish models, the two fish models complement the mouse in genetically dissecting vertebrate genome functions. The external embryogenesis and transparent embryos of the fish allow systematic isolation of embryonic lethal mutations, the most difficult targets in mammalian mutant screens. This chapter will describe how to work with both medaka and zebrafish almost as one species in a lab, focusing on medaka and highlighting the differences between the medaka and zebrafish systems.

Key words

Medaka zebrafish vertebrate genome function evolution mutant 

Notes

Acknowledgements

The authors would like to thank Dr. Matthew Harris and Prof. Cheryll Tickle for valuable comments.

References

  1. 1.
    Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36.PubMedGoogle Scholar
  2. 2.
    Furutani-Seiki, M., Sasado, T., Morinaga, C., Suwa, H., Niwa, K., Yoda, H., et al. (2004) A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mech. Dev. 121, 647–658.PubMedCrossRefGoogle Scholar
  3. 3.
    Hrabe de Angelis, M.H., Flaswinkel, H., Fuchs, H., Rathkolb, B., Soewarto, D., Marschall, S., et al. (2000) Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet. 25, 444–447.PubMedCrossRefGoogle Scholar
  4. 4.
    Nolan, P.M., Peters, J., Vizor, L., Strivens, M., Washbourne, R., Hough, T., et al. (2000) Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm. Genome 11, 500–506.PubMedCrossRefGoogle Scholar
  5. 5.
    Nolan, P.M., Peters, J., Strivens, M., Rogers, D., Hagan, J., Spurr, N., et al. (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat. Genet. 25, 440–443.PubMedCrossRefGoogle Scholar
  6. 6.
    Loosli, F., Staub, W., Finger-Baier, K.C., Ober, E.A., Verkade, H., Wittbrodt, J., et al. (2003) Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Rep. 4, 894–899.PubMedCrossRefGoogle Scholar
  7. 7.
    Sasado, T., Yasuoka, A., Abe, K., Mitani, H., Furutani-Seiki, M., Tanaka, M., et al. (2008) Distinct contributions of CXCR4b and CXCR7/RDC1 receptor systems in regulation of PGC migration revealed by medaka mutants kazura and yanagi. Dev. Biol. 320, 328–339.PubMedCrossRefGoogle Scholar
  8. 8.
    Wittbrodt, J., Shima, A., and Schartl, M. (2002) Medaka—A model organism from the Far East. Nat. Rev. Genet. 3, 53–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.L., and Postlethwait, J. (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545.PubMedGoogle Scholar
  10. 10.
    Ohno, S. (1970) Evolution by Gene Duplication. Springer, Heidelberg, Germany.Google Scholar
  11. 11.
    Amores, A., Force, A., Yan, Y.L., Joly, L., Amemiya, C., Fritz, A., et al. (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714.PubMedCrossRefGoogle Scholar
  12. 12.
    Furutani-Seiki, M. and Wittbrodt, J. (2004) Medaka and zebrafish, an evolutionary twin study. Mech. Dev. 121, 629–637.PubMedCrossRefGoogle Scholar
  13. 13.
    Schartl, M. (2004) A comparative view on sex determination in medaka. Mech. Dev. 121, 639–645.PubMedCrossRefGoogle Scholar
  14. 14.
    Haffter, P., Odenthal, J., Mullins, M.C., Lin, S., Farrell, M.J., Vogelsang, E., et al. (1996) Mutations affecting pigmentation and shape of the adult zebrafish. Dev. Gene Evol. 206, 260–276.CrossRefGoogle Scholar
  15. 15.
    Chen, J.N. and Fishman, M.C. (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122, 3809–3816.PubMedGoogle Scholar
  16. 16.
    Stainier, D.Y., Fouquet, B., Chen, J.N., Warren, K.S., Weinstein, B.M., Meiler, S.E., et al. (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292.PubMedGoogle Scholar
  17. 17.
    Rohner, N., Bercsenyi, M., Orban, L., Kolanczyk, M.E., Linke, D., Brand, M., et al. (2010) Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication. Curr. Biol. 19, 1642–1647.CrossRefGoogle Scholar
  18. 18.
    Yamamoto, T. (1975) Medaka, Biology and Strains. Yugakusya Publ, Tokyo.Google Scholar
  19. 19.
    Toyama, K. (1916) Some examples of Mendelian characters. Nihon Ikushugaku Kaiho [in Japanese] 1, 1–9.Google Scholar
  20. 20.
    Aida, T. (1921) On the inheritance of color in a fresh-water fish, Aplocheilus latipes Temminck and Schlegel, with special reference to sex-linked inheritance. Genetics 6, 554–573.PubMedGoogle Scholar
  21. 21.
    Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., et al. (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563.PubMedCrossRefGoogle Scholar
  22. 22.
    Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., et al. (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc. Natl. Acad. Sci. USA 99, 11778–11783.PubMedCrossRefGoogle Scholar
  23. 23.
    Egami, N. (1969) Kinetics of recovery from injury after whole-body x-irradiation of the fish Oryzias latipes at different temperatures. Radiat. Res. 37, 192–201.PubMedCrossRefGoogle Scholar
  24. 24.
    Masahito, P., Aoki, K., Egami, N., Ishikawa, T., and Sugano, H. (1989) Life-span studies on spontaneous tumor development in the medaka (Oryzias latipes). Jpn. J. Cancer Res. 80, 1058–1065.PubMedCrossRefGoogle Scholar
  25. 25.
    Hyodo-Taguchi, Y. and Matsudaira, H. (1984) Induction of transplantable melanoma by treatment with N-methyl-N’-nitro-N-nitrosoguanidine in an inbred strain of the teleost Oryzias latipes. J. Natl. Cancer Inst. 73, 1219–1227.PubMedGoogle Scholar
  26. 26.
    Hyodo-Taguchi YaE, N. (1985) Establishment of inbred strains of the medaka Oryzias latipes and the usefulness of the strains for biomedical research. Zool. Sci. 2, 305–316.Google Scholar
  27. 27.
    Shima, A. and Shimada, A. (1991) Development of a possible nonmammalian test system for radiation-induced germ-cell mutagenesis using a fish, the Japanese medaka (Oryzias latipes). Proc. Natl. Acad. Sci. USA 88, 2545–2549.PubMedCrossRefGoogle Scholar
  28. 28.
    Sakaizumi, M. (1986) Genetic divergence in wild populations of medaka, Oryzias latipes (Pisces; Oryziatidae) from Japan and China. Genetica 69, 119–125.CrossRefGoogle Scholar
  29. 29.
    Tomita, H. (1971) The new body color mutants in the medaka (Abstract, in Japanese). Zool. Mag. 80, 450–451.Google Scholar
  30. 30.
    Ozato, K., Kondoh, H., Inohara, H., Iwamatsu, T., Wakamatsu, Y., and Okada, T.S. (1986) Production of transgenic fish: introduction and expression of chicken delta-crystallin gene in medaka embryos. Cell Differ. 19, 237–244.PubMedCrossRefGoogle Scholar
  31. 31.
    Wakamatsu, Y., Pristyazhnyuk, S., Kinoshita, M., Tanaka, M., and Ozato, K. (2001) The see-through medaka: a fish model that is transparent throughout life. Proc. Natl. Acad. Sci. USA 98, 10046–10050.PubMedCrossRefGoogle Scholar
  32. 32.
    Naruse, K., Fukamachi, S., Mitani, H., Kondo, M., Matsuoka, T., Kondo, S., et al. (2000) A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics 154, 1773–1784.PubMedGoogle Scholar
  33. 33.
    Kimura, T., Jindo, T., Narita, T., Naruse, K., Kobayashi, D., Shin-I, T., et al. (2004) Large-scale isolation of ESTs from medaka embryos and its application to medaka developmental genetics. Mech. Dev. 121, 915–932.PubMedCrossRefGoogle Scholar
  34. 34.
    Lo, L., Zhang, Z., Hong, N., Peng, J., and Hong, Y. (2008) 3640 unique EST clusters from the medaka testis and their potential use for identifying conserved testicular gene expression in fish and mammals. PLoS ONE 3, e3915.PubMedCrossRefGoogle Scholar
  35. 35.
    Khorasani, M.Z., Hennig, S., Imre, G., Asakawa, S., Palczewski, S., Berger, A., et al. (2004) A first generation physical map of the medaka genome in BACs essential for positional cloning and clone-by-clone based genomic sequencing. Mech. Dev. 121, 903–913.PubMedCrossRefGoogle Scholar
  36. 36.
    Hong, Y., Winkler, C., and Schartl, M. (1996) Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech. Dev. 60, 33–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Wakamatsu, Y. (2008) Novel method for the nuclear transfer of adult somatic cells in medaka fish (Oryzias latipes): use of diploidized eggs as recipients. Dev. Growth Differ. 50, 427–436.PubMedCrossRefGoogle Scholar
  38. 38.
    Loosli, F., Koster, R.W., Carl, M., Kühnlein, R., Henrich, T., Mücke, M., et al. (2000) A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes). Mech. Dev. 97, 133–139.PubMedCrossRefGoogle Scholar
  39. 39.
    Ishikawa, Y. (2000) Medakafish as a model system for vertebrate developmental genetics. Bioessays 22, 487–495.PubMedCrossRefGoogle Scholar
  40. 40.
    Matsuda, M., Kawato, N., Asakawa, S., Shimizu, N., Nagahama, Y., Hamaguchi, S., et al. (2001) Construction of a BAC library derived from the inbred Hd-rR strain of the teleost fish, Oryzias latipes. Genes Genet. Syst. 76, 61–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Watanabe, T., Asaka, S., Kitagawa, D., Saito, K., Kurashige, R., Sasado, T., et al. (2004) Mutations affecting liver development and function in Medaka, Oryzias latipes, screened by multiple criteria. Mech. Dev. 121, 791–802.PubMedCrossRefGoogle Scholar
  42. 42.
    Taniguchi, Y., Takeda, S., Furutani-Seiki, M., Kamei, Y., Todo, T., Sasado, T., et al. (2006) Generation of medaka gene knockout models by target-selected mutagenesis. Genome Biol. 7, R116.PubMedCrossRefGoogle Scholar
  43. 43.
    Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., et al. (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714–719.PubMedCrossRefGoogle Scholar
  44. 44.
    Koga, A., Inagaki, H., Bessho, Y., and Hori, H. (1995) Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Mol. Gen. Genet. 249, 400–405.PubMedCrossRefGoogle Scholar
  45. 45.
    Kawakami, K., Shima, A., and Kawakami, N. (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc. Natl. Acad. Sci. USA 97, 11403–11408.PubMedCrossRefGoogle Scholar
  46. 46.
    Nuesslein-Volhard, C.D. (2002) Zebrafish. Oxford University Press, New York, NY.Google Scholar
  47. 47.
    Westerfield, M. (1994) The Zebrafish Book: A guide for the laboratory use of zebrafish (Brachydanio rerio). Univ. Oregon press, Eugene, Oregon.Google Scholar
  48. 48.
    Iwamatsu, T. (1994) Stages of normal development in the medaka Oryzias latipes. Zool. Sci. 11, 825–839.Google Scholar
  49. 49.
    Yasumasu, S., Iuchi, I., and Yamagami, K. (1989) Isolation and some properties of low choriolytic enzyme (LCE), a component of the hatching enzyme of the teleost, Oryzias latipes. J. Biochem. 105, 212–218.PubMedGoogle Scholar
  50. 50.
    Cope, J., Fluck, R., Nicklas, L., Plumhoff, L.A., and Sincock, S. (1990) The stellate layer and rhythmic contractions of the Oryzias latipes embryo. J. Exp. Zool. 254, 270–275.PubMedCrossRefGoogle Scholar
  51. 51.
    Rembold, M., Loosli, F., Adams, R.J., and Wittbrodt, J. (2006) Individual cell migration serves as the driving force for optic vesicle evagination. Science 313, 1130–1134.PubMedCrossRefGoogle Scholar
  52. 52.
    Brend, T. and Holley, S.A. (2009) Zebrafish whole mount high-resolution double fluorescent in situ hybridization. JoVE 25, 1–3.Google Scholar
  53. 53.
    Iwamatsu, T. (2006) Encyclopedia of Medaka Study (in Japanese). University Education Press, Okayama.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sean R. Porazinski
    • 1
  • Huijia Wang
    • 1
  • Makoto Furutani-Seiki
    • 1
  1. 1.Department of Biology and Biochemistry, Centre for Regenerative MedicineThe University of BathBathUK

Personalised recommendations