Advertisement

Manipulation of Gene Function in Xenopus laevis

  • Mizuho S. Mimoto
  • Jan L. Christian
Part of the Methods in Molecular Biology book series (MIMB, volume 770)

Abstract

Xenopus laevis embryos are particularly well suited to address questions requiring either knockdown or overexpression of genes in a tissue-specific fashion during vertebrate embryonic development. These manipulations are achieved by targeted injection of either antisense morpholino oligonucleotides or synthetic mRNAs, respectively, into the early embryo. Herein we offer detailed protocols describing how to design and perform these experiments successfully, as well as a brief discussion of considerations for performing a microarray analysis in this organism.

Key words

Xenopus laevis embryogenesis microinjection morpholinos gene knockdown microarray 

Notes

Acknowledgments

This work was supported by grants from the NIH (RO3HD058841 and RO1HD37976) and Shriners’ Hospital Research Foundation to JLC. MM was supported by NIH grant T32HD049309.

References

  1. 1.
    Dale, L. and Slack, J. M. (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527–551.PubMedGoogle Scholar
  2. 2.
    Moody, S. A. (1987) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev. Biol. 122, 300–319.PubMedCrossRefGoogle Scholar
  3. 3.
    Moody, S. A. (1987) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev. Biol. 119, 560–578.PubMedCrossRefGoogle Scholar
  4. 4.
    Green, J. B., Smith, J. C., and Gerhart, J. C. (1994) Slow emergence of a multithreshold response to activin requires cell-contact-dependent sharpening but not prepattern. Development 120, 2271–2278.PubMedGoogle Scholar
  5. 5.
    Galli, A., Roure, A., Zeller, R., and Dono, R. (2003) Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos. Development 130, 4919–4929.PubMedCrossRefGoogle Scholar
  6. 6.
    Scharf, S. R. and Gerhart, J. C. (1983) Axis determination in eggs of Xenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation. Dev. Biol. 99, 75–87.PubMedCrossRefGoogle Scholar
  7. 7.
    Kao, K. R., Masui, Y., and Elinson, R. P. (1986) Lithium-induced respecification of pattern in Xenopus laevis embryos. Nature 322, 371–373.PubMedCrossRefGoogle Scholar
  8. 8.
    Dale, L., Howes, G., Price, B. M., and Smith, J. C. (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585.PubMedGoogle Scholar
  9. 9.
    Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V., and Hogan, B. L. (1992) DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639–647.PubMedGoogle Scholar
  10. 10.
    Maeno, M., Ong, R. C., Suzuki, A., Ueno, N., and Kung, H. F. (1994) A truncated bone morphogenetic protein 4 receptor alters the fate of ventral mesoderm to dorsal mesoderm: roles of animal pole tissue in the development of ventral mesoderm. Proc. Natl. Acad. Sci. USA 91, 10260–10264.PubMedCrossRefGoogle Scholar
  11. 11.
    Suzuki, A., Thies, R. S., Yamaji, N., Song, J. J., Wozney, J. M., Murakami, K., and Ueno, N. (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl. Acad. Sci. USA 91, 10255–10259.PubMedCrossRefGoogle Scholar
  12. 12.
    Sargent, T. D. and Mathers, P. H. (1991) Analysis of class II gene regulation. Methods Cell Biol. 36, 347–365.PubMedCrossRefGoogle Scholar
  13. 13.
    Vize, P. D., Melton, D. A., Hemmati-Brivanlou, A., and Harland, R. M. (1991) Assays for gene function in developing Xenopus embryos. Methods Cell Biol. 36, 367–387.PubMedCrossRefGoogle Scholar
  14. 14.
    Heasman, J. (2002) Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–214.PubMedCrossRefGoogle Scholar
  15. 15.
    Ogino, H. and Ochi, H. (2009) Resources and transgenesis techniques for functional genomics in Xenopus. Dev. Growth Differ. 51, 387–401.PubMedCrossRefGoogle Scholar
  16. 16.
    Zelus, B. D., Giebelhaus, D. H., Eib, D. W., Kenner, K. A., and Moon, R. T. (1989) Expression of the poly(A)-binding protein during development of Xenopus laevis. Mol. Cell. Biol. 9, 2756–2760.PubMedGoogle Scholar
  17. 17.
    Rupp, R. A., Snider, L., and Weintraub, H. (1994) Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1323.PubMedCrossRefGoogle Scholar
  18. 18.
    Turner, D. L. and Weintraub, H. (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8, 1434–1447.PubMedCrossRefGoogle Scholar
  19. 19.
    Nieuwkoop, P. D. and Faber, J., and Hubrecht-Laboratory (1967) Normal table of Xenopus laevis (Daudin). A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis, 2 ed. North-Holland Pub. Co., Amsterdam.Google Scholar
  20. 20.
    Sive, H. L., Grainger, R. M., and Harland, R. M. (2000) Early Development of Xenopus laevis: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  21. 21.
    Lane, M. C. and Sheets, M. D. (2006) Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development. Dev. Biol. 296, 12–28.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mizuho S. Mimoto
    • 1
  • Jan L. Christian
    • 1
  1. 1.Department of Cell and Developmental BiologyOregon Health and Science University, School of MedicinePortlandUSA

Personalised recommendations