Cell Migration pp 111-136

Part of the Methods in Molecular Biology book series (MIMB, volume 769)

Imaging Podosome Dynamics and Matrix Degradation

  • Taylor W. Starnes
  • Christa L. Cortesio
  • Anna Huttenlocher
Protocol

Abstract

Invasive cell migration is critical for leukocyte trafficking into tissues. Podosomes are matrix-degrading adhesive structures that are formed by macrophages and are necessary for macrophage migration and invasion. Here, we describe methods for imaging and quantifying podosomes in primary human macrophages and in THP-1 cells, a monocyte cell line that can be differentiated to a macrophage-like state. Moreover, we outline detailed methods for live imaging of podosomes, which are highly dynamic, and for the quantification of rates of podosome turnover. Finally, we discuss methods for the quantitative analysis of matrix degradation on fluorescent-gelatin-coated cover slips.

Key words

Podosomes Podosome turnover Podosome dynamics Macrophage THP-1 Live imaging Gelatin degradation Lifeact Invadopodia 

References

  1. 1.
    Tarone, G., Cirillo, D., Giancotti, F., Comoglio, P., and Marchisio, P. (1985) Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes., Exp Cell Res 159, 141–157.PubMedCrossRefGoogle Scholar
  2. 2.
    Hai, C., Hahne, P., Harrington, E., and Gimona, M. (2002) Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in a7r5 smooth muscle cells., Exp Cell Res 280, 64–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Lener, T., Burgstaller, G., Crimaldi, L., Lach, S., and Gimona, M. (2006) Matrix-degrading podosomes in smooth muscle cells., Eur J Cell Biol 85, 183–189.PubMedCrossRefGoogle Scholar
  4. 4.
    Linder, S. (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation., Trends Cell Biol 17, 107–117.PubMedCrossRefGoogle Scholar
  5. 5.
    Evans, J., Correia, I., Krasavina, O., Watson, N., and Matsudaira, P. (2003) Macrophage podosomes assemble at the leading lamella by growth and fragmentation., J Cell Biol 161, 697–705.PubMedCrossRefGoogle Scholar
  6. 6.
    Linder, S., Nelson, D., Weiss, M., and Aepfelbacher, M. (1999) Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages., Proc Natl Acad Sci USA 96, 9648–9653.PubMedCrossRefGoogle Scholar
  7. 7.
    Calle, Y., Antón, I., Thrasher, A., and Jones, G. (2008) WASP and WIP regulate podosomes in migrating leukocytes., J Microsc 231, 494–505.PubMedCrossRefGoogle Scholar
  8. 8.
    Linder, S., and Aepfelbacher, M. (2003) Podosomes: adhesion hot-spots of invasive cells., Trends Cell Biol 13, 376–385.PubMedCrossRefGoogle Scholar
  9. 9.
    Buccione, R., Orth, J., and McNiven, M. (2004) Foot and mouth: podosomes, invadopodia and circular dorsal ruffles., Nat Rev Mol Cell Biol 5, 647–657.PubMedCrossRefGoogle Scholar
  10. 10.
    Ley, K., Laudanna, C., Cybulsky, M., and Nourshargh, S. (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated., Nat Rev Immunol 7, 678–689.PubMedCrossRefGoogle Scholar
  11. 11.
    Carman, C., Sage, P., Sciuto, T., de la Fuente, M., Geha, R., Ochs, H., Dvorak, H., Dvorak, A., and Springer, T. (2007) Transcellular diapedesis is initiated by invasive podosomes., Immunity 26, 784–797.PubMedCrossRefGoogle Scholar
  12. 12.
    Cougoule, C., Le Cabec, V., Poincloux, R., Al Saati, T., Mège, J., Tabouret, G., Lowell, C., Laviolette-Malirat, N., and Maridonneau-Parini, I. (2010) Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis., Blood 115, 1444–1452.PubMedCrossRefGoogle Scholar
  13. 13.
    Jones, G., Zicha, D., Dunn, G., Blundell, M., and Thrasher, A. (2002) Restoration of podosomes and chemotaxis in Wiskott-Aldrich syndrome macrophages following induced expression of WASp., Int J Biochem Cell Biol 34, 806–815.PubMedCrossRefGoogle Scholar
  14. 14.
    Dovas, A., Gevrey, J., Grossi, A., Park, H., Abou-Kheir, W., and Cox, D. (2009) Regulation of podosome dynamics by WASp phosphorylation: implication in matrix degradation and chemotaxis in macrophages., J Cell Sci 122, 3873–3882.PubMedCrossRefGoogle Scholar
  15. 15.
    Tsuboi, S. (2006) A complex of Wiskott-Aldrich syndrome protein with mammalian verprolins plays an important role in monocyte chemotaxis., J Immunol 176, 6576–6585.PubMedGoogle Scholar
  16. 16.
    Svensson, H., West, M., Mollahan, P., Prescott, A., Zaru, R., and Watts, C. (2008) A role for ARF6 in dendritic cell podosome formation and migration., Eur J Immunol 38, 818–828.PubMedCrossRefGoogle Scholar
  17. 17.
    Ochs, H., and Thrasher, A. (2006) The Wiskott-Aldrich syndrome., J Allergy Clin Immunol 117, 725–738; quiz 739.Google Scholar
  18. 18.
    Cortesio, C., Cooper, K., Wernimont, S., Kastner, D., and Huttenlocher, A. (2010) Impaired podosome formation and invasive migration of macrophages from patients with a PSTPIP1 mutation and PAPA syndrome., Arthritis Rheum.Google Scholar
  19. 19.
    Ruoslahti, E., Hayman, E., Pierschbacher, M., and Engvall, E. (1982) Fibronectin: purification, immunochemical properties, and biological activities., Methods Enzymol 82 Pt A, 803–831.Google Scholar
  20. 20.
    Tsuboi, S., Takada, H., Hara, T., Mochizuki, N., Funyu, T., Saitoh, H., Terayama, Y., Yamaya, K., Ohyama, C., Nonoyama, S., and Ochs, H. (2009) FBP17 Mediates a Common Molecular Step in the Formation of Podosomes and Phagocytic Cups in Macrophages., J Biol Chem 284, 8548–8556.PubMedCrossRefGoogle Scholar
  21. 21.
    Dostert, C., Pétrilli, V., Van Bruggen, R., Steele, C., Mossman, B., and Tschopp, J. (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica., Science 320, 674–677.PubMedCrossRefGoogle Scholar
  22. 22.
    Carrithers, M., Chatterjee, G., Carrithers, L., Offoha, R., Iheagwara, U., Rahner, C., Graham, M., and Waxman, S. (2009) Regulation of podosome formation in macrophages by a splice variant of the sodium channel SCN8A., J Biol Chem 284, 8114–8126.PubMedCrossRefGoogle Scholar
  23. 23.
    Reiner, N. (2009) Methods in molecular biology. Macrophages and dendritic cells. Methods and protocols. Preface., Methods Mol Biol 531, v–vi.Google Scholar
  24. 24.
    Mosier, D. E. (2004) Introduction for “Safety Considerations for Retroviral Vectors: A Short Review”, pp 68–75, Applied Biological Safety Association, Applied Biosafety.Google Scholar
  25. 25.
    Zhang, X., Edwards, J., and Mosser, D. (2009) The expression of exogenous genes in macrophages: obstacles and opportunities., Methods Mol Biol 531, 123–143.PubMedCrossRefGoogle Scholar
  26. 26.
    Riedl, J., Crevenna, A., Kessenbrock, K., Yu, J., Neukirchen, D., Bista, M., Bradke, F., Jenne, D., Holak, T., Werb, Z., Sixt, M., and Wedlich-Soldner, R. (2008) Lifeact: a versatile marker to visualize F-actin., Nat Methods 5, 605–607.PubMedCrossRefGoogle Scholar
  27. 27.
    Schnoor, M., Buers, I., Sietmann, A., Brodde, M., Hofnagel, O., Robenek, H., and Lorkowski, S. (2009) Efficient non-viral transfection of THP-1 cells., J Immunol Methods 344, 109–115.PubMedCrossRefGoogle Scholar
  28. 28.
    Calle, Y., Carragher, N., Thrasher, A., and Jones, G. (2006) Inhibition of calpain stabilises podosomes and impairs dendritic cell motility., J Cell Sci 119, 2375–2385.PubMedCrossRefGoogle Scholar
  29. 29.
    Webb, D., Donais, K., Whitmore, L., Thomas, S., Turner, C., Parsons, J., and Horwitz, A. (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly., Nat Cell Biol 6, 154–161.PubMedCrossRefGoogle Scholar
  30. 30.
    Chan, K., Cortesio, C., and Huttenlocher, A. (2007) Integrins in cell migration., Methods Enzymol 426, 47–67.PubMedCrossRefGoogle Scholar
  31. 31.
    Zamir, E., Katz, B., Aota, S., Yamada, K., Geiger, B., and Kam, Z. (1999) Molecular diversity of cell-matrix adhesions., J Cell Sci 112 (Pt 11), 1655–1669.Google Scholar
  32. 32.
    Yamaguchi, H., Pixley, F., and Condeelis, J. (2006) Invadopodia and podosomes in tumor invasion., Eur J Cell Biol 85, 213–218.PubMedCrossRefGoogle Scholar
  33. 33.
    Tu, C., Ortega-Cava, C., Chen, G., Fernandes, N., Cavallo-Medved, D., Sloane, B., Band, V., and Band, H. (2008) Lysosomal cathepsin B participates in the podosome-mediated ­extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts., Cancer Res 68, 9147–9156.PubMedCrossRefGoogle Scholar
  34. 34.
    Mulari, M., Zhao, H., Lakkakorpi, P., and Väänänen, H. (2003) Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake., Traffic 4, 113–125.PubMedCrossRefGoogle Scholar
  35. 35.
    Cougoule, C., Carréno, S., Castandet, J., Labrousse, A., Astarie-Dequeker, C., Poin­cloux, R., Le Cabec, V., and Maridonneau-Parini, I. (2005) Activation of the lysosome-­associated p61Hck isoform triggers the biogenesis of podosomes., Traffic 6, 682–694.PubMedCrossRefGoogle Scholar
  36. 36.
    Artym, V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K., and Mueller, S. (2006) Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function., Cancer Res 66, 3034–3043.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Taylor W. Starnes
  • Christa L. Cortesio
  • Anna Huttenlocher
    • 1
  1. 1.Department of Medical Microbiology and ImmunologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations