Cell Migration pp 233-247 | Cite as

Analysis of Cell Migration Using Caenorhabditis elegans as a Model System

  • Ming-Ching Wong
  • Maria Martynovsky
  • Jean E. Schwarzbauer
Part of the Methods in Molecular Biology book series (MIMB, volume 769)


The nematode Caenorhabditis elegans is an excellent model system in which to study long-distance cell migration in vivo. This chapter describes methods used to study a subset of migratory cells in the hermaphrodite nematode, the distal tip cells. These methods take advantage of the organism’s transparent body and the expression of green fluorescent protein to observe cell migration and behavior. Additionally, the availability of nematode mutants and gene knockdown techniques that affect cell migration allow the analysis and comparison of wild-type and aberrant migratory paths. Methods for nematode growth and maintenance, strain acquisition, observation and live imaging, gene knockdown, and analysis of cell migration defects are covered.

Key words

C. elegans Cell migration Mutants RNAi Distal tip cells Live imaging Green fluorescent protein 



This work was supported by grants from the NIH (R01 GM059383 and NIGMS Cell Migration Consortium U54 GM064346). M.C.W. is supported by a postdoctoral fellowship from the New Jersey Commission on Cancer Research (10-2409-CCR-EO). M.M. was supported by a Predoctoral Training Grant in Genetics and Molecular Biology (T32 GM007388).


  1. 1.
    Nishiwaki, K. (1999) Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics. 152, 985–997.PubMedGoogle Scholar
  2. 2.
    Blelloch, R., Anna-Arriola, S. S., Gao, D., Li, Y., Hodgkin, J., and Kimble, J. (1999) The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Dev. Biol. 216, 382–393.PubMedCrossRefGoogle Scholar
  3. 3.
    Meighan, C. M., and Schwarzbauer, J. E. (2007) Control of C. elegans hermaphrodite gonad size and shape by vab-3/Pax6-mediated regulation of integrin receptors. Genes Dev. 21, 1615–1620.PubMedCrossRefGoogle Scholar
  4. 4.
    Reddien, P. W., and Horvitz, H. R. (2000) CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhab­ditis elegans. Nat. Cell. Biol. 2, 131–136.PubMedCrossRefGoogle Scholar
  5. 5.
    Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M., and Ahringer, J. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 408, 325–330.PubMedCrossRefGoogle Scholar
  6. 6.
    Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P., and Ahringer, J. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 421, 231–237.PubMedCrossRefGoogle Scholar
  7. 7.
    Rual, J. F., Ceron, J., Koreth, J., Hao, T., Nicot, A. S., Hirozane-Kishikawa, T., Vandenhaute, J., Orkin, S. H., Hill, D. E., van den Heuvel, S., and Vidal, M. (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168.PubMedCrossRefGoogle Scholar
  8. 8.
    Ahringer J. (June 6, 2006) Reverse genetics, In WormBook, ed. The C. elegans Reseach Community, WormBook doi/ 10.1895/wormbook.1.47.1, http://wormbook.org.
  9. 9.
    Qadota, H., Inoue, M., Hikita, T., Koppen, M., Hardin, J. D., Amano, M., Moerman, D. G., and Kaibuchi, K. (2007) Establishment of a tissue-specific RNAi system in C. elegans. Gene. 400, 166–173.PubMedCrossRefGoogle Scholar
  10. 10.
    Simmer, F., Tijsterman, M., Parrish, S., Koushika, S. P., Nonet, M. L., Fire, A., Ahringer, J., and Plasterk, R. H. (2002) Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317–1319.PubMedCrossRefGoogle Scholar
  11. 11.
    Kennedy, S., Wang, D., and Ruvkun, G. (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature. 427, 645–649.PubMedCrossRefGoogle Scholar
  12. 12.
    Knobel, K. M., Jorgensen, E. M., and Bastiani, M. J. (1999) Growth cones stall and collapse during axon outgrowth in Caenorhabditis elegans. Development. 126, 4489–4498.PubMedGoogle Scholar
  13. 13.
    Suzuki, H., Kerr, R., Bianchi, L., Frokjaer-Jensen, C., Slone, D., Xue, J., Gerstbrein, B., Driscoll, M., and Schafer, W. R. (2003) In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron. 39, 1005–1017.PubMedCrossRefGoogle Scholar
  14. 14.
    Rohde, C. B., Zeng, F., Gonzalez-Rubio, R., Angel, M., and Yanik, M. F. (2007) Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. USA. 104, 13891–13895.PubMedCrossRefGoogle Scholar
  15. 15.
    Podbilewicz, B., and Gruenbaum, Y. (2006) Live Imaging of Caenorhabditis elegans: Preparation of Samples. In Cold Spring Harb. Protoc. doi: 10.1101/pdb.ip19.Google Scholar
  16. 16.
    Driscoll, M., and Chalfie, M. (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature. 349, 588–593.PubMedCrossRefGoogle Scholar
  17. 17.
    Forrester, W. C., Perens, E., Zallen, J. A., and Garriga, G. (1998) Identification of Caenorhabditis elegans genes required for ­neuronal differentiation and migration. Genetics. 148, 151–165.PubMedGoogle Scholar
  18. 18.
    Honigberg, L., and Kenyon, C. (2000) Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development. 127, 4655–4668.PubMedGoogle Scholar
  19. 19.
    Collet, J., Spike, C. A., Lundquist, E. A., Shaw, J. E., and Herman, R. K. (1998) Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Genetics. 148, 187–200.PubMedGoogle Scholar
  20. 20.
    Finney, M., and Ruvkun, G. (1990) The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell. 63, 895–905.PubMedCrossRefGoogle Scholar
  21. 21.
    Maduro, M., and Pilgrim, D. (1995) Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics. 141, 977–988.PubMedGoogle Scholar
  22. 22.
    Harfe, B. D., Vaz Gomes, A., Kenyon, C., Liu, J., Krause, M., and Fire, A. (1998) Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev. 12, 2623–2635.PubMedCrossRefGoogle Scholar
  23. 23.
    Henderson, S. T., Gao, D., Lambie, E. J., and Kimble, J. (1994) lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development. 120, 2913–2924.PubMedGoogle Scholar
  24. 24.
    Epstein, H. F., and Shakes, D. C., (Eds.) (1995) Caenorhabditis elegans: Moderm Biological Analysis of an Organism. Vol. 48, Academic Press, Inc., San Diego.Google Scholar
  25. 25.
    Cram, E. J., Shang, H., and Schwarzbauer, J. E. (2006) A systematic RNA interference screen reveals a cell migration gene network in C. elegans. J. Cell. Sci. 119, 4811–4818.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ming-Ching Wong
  • Maria Martynovsky
  • Jean E. Schwarzbauer
    • 1
  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations