Proprotein Convertases pp 343-363

Part of the Methods in Molecular Biology book series (MIMB, volume 768) | Cite as

Neurophenotyping Genetically Modified Mice for Social Behavior

  • Ramona M. Rodriguiz
  • Jennifer S. Colvin
  • William C. Wetsel
Protocol

Abstract

Sociability in mice is a multidimensional adaptive and functional response. Due to its complexity, it is important that researchers use well-defined behavioral assays that are easily replicated with clearly defined ethograms. In the Mouse Behavioral and Neuroendocrine Analysis Core Facility at Duke University, we have developed a broad series of tests that examine different components of neonatal and adult social behaviors that include sociability, sexual behavior, aggressive and territorial responses, and maternal behaviors. While the purpose of this chapter is not to provide an exhaustive description of all mouse social tests available, we provide investigators with a description of basic procedures and considerations necessary to develop a successful social behavior testing program within their laboratories.

Key words

Social behavior sociability aggression sexual behavior resident-intruder social dyadic maternal behavior mother–pup interactions ultrasonic vocalizations 

References

  1. 1.
    Strand, F. L. (2003) Neuropeptides: General characteristics and neuropharmaceutical potential in treating CNS disorders Prog Drug Res 61, 1–37.PubMedGoogle Scholar
  2. 2.
    Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Levin, E. D., Jaber, M., and Caron, M. G. (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity Science 283, 397–401.PubMedCrossRefGoogle Scholar
  3. 3.
    Xu, F., Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Bohn, L. M., Miller, G. W., Wang, Y. M., and Caron, M. G. (2000) Supersensitivity to psychostimulants in mice lacking the noradrenaline transporter Nature Neurosci 3, 465–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Ribar, T. J., Rodriguiz, R. M., Khiroug, L., Wetsel, W. C., Augustine, G. J., and Means, A. R. (2000) Cerebellar deficits in Ca2+/Calmodulin kinase IV-deficient mice J Neurosci 20(RC107), 1–5.Google Scholar
  5. 5.
    Nillni, E. A., Xie, W., Mulcahy, L., Sanchez, V. C., and Wetsel, W. C. (2002) Deficiencies in pro-thyrotropin-releasing hormone (pro-TRH) processing and abnormalities in thermoregulation in Cpe fat/fat mice J Biol Chem 277, 48587–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Rodriguiz, R. M., Chu, R., Caron, M. G., and Wetsel, W. C. (2004) Aberrant responses in social interaction of dopamine transporter knockout mice Behav Brain Res 148, 185–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Srinivasan, S., Bunch, D. O., Feng, Y., Rodriguiz, R. M., Li, M., Ravenell, R. L., Luo, G. X., Arimura, A., Fricker, L. D., Eddy, E. M., and Wetsel, W. C. (2004) Analysis of the infertility phenotype in male Cpe fat/fat mice Endocrinology 145, 2023–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Pillai-Nair, N., Panicker, A. K., Rodriguiz, R. M., Gilmore, K. L., Demyanenko, G. P., Huang, J. Z., Wetsel, W. C., and Maness, P. F. (2005) Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behaviour J Neurosci 25, 4659–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Cawley, N. X., Zhou, J., Hill, J., Abebe, D., Romboz, S., Yanik, T., Rodriguiz, R. M., Wetsel, W. C., and Loh, Y. P. (2004) The carboxypeptidase E knockout mouse exhibits endocrinological and behavioral deficits Endocrinology 145, 5807–19.PubMedCrossRefGoogle Scholar
  10. 10.
    Sotnikova, T. D., Beaulieu, J.-M., Barak, L. S., Wetsel, W. C., Caron, M. G., and Gaintedinov, R. R. (2005) Dopamine-independent locomotor actions of amphetamines in a novel acute model of Parkinson’s disease PLoS Biol 3, 1–13.CrossRefGoogle Scholar
  11. 11.
    Prado, V. F., Martins-Silva, C., de Castro, B. M., Lima, R. F., Barros, D. M., Amaral, A. J., Ramsey, A. J., Sotnikova, T. D., Ramirez, M. R., Kim, H.-G., Rossato, J. I., Koenen, J., Quan, H., Cota, V. R., Moraes, M. F., Gomez, M. V., Guatimosim, C., Wetsel, W. C., Kushmerick, C., Pereira, G. S., Gainetdinov, R. R., Izquierdo, I. A., Caron, M. G., and Prado, M. A. (2006) Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in social recognition Neuron 51, 601–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Fukui, M., Rodriguiz, R. M., Zhou, J., Jiang, S. X., Phillips, L. E., Caron, M. G., and Wetsel, W. C. (2007) Vmat2 heterozygous mutant mice display a depressive-like phenotype J Neurosci 27, 10520–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Welch, J. M., Lu, J., Rodriguiz, R. M., Trotta, N. C., Peca, J., Ding, J.-D., Feliciano, C., Adams, J. P., Dudek, S. M., Weinberg, R. J., Calakos, N., Wetsel, W. C., and Feng, G. (2007) Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice Nature 448, 894–900.PubMedCrossRefGoogle Scholar
  14. 14.
    Beaulieu, J.-M., Zhang, M., Rodriguiz, R. M., Sotnikova, T. D., Cools, M. J., Wetsel, W. C., Gainetdinov, R. R., and Caron, M. G. (2008) Role of GSK3β in behavioral abnormalities induced by serotonin deficiency Proc Natl Acad Sci USA 105, 1333–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Nehrenberg, D. L., Gariépy, J.-L., Rodriguiz, R. M., Zhou, X., Lauder, J. M., Cyr, M., and Wetsel, W. C. (2009) An anxiety-like phenotype in mice selectively bred for aggression Behav Brain Res 201, 179–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Allen, K. D., Griffin, T. M., Rodriguiz, R. M., Wetsel, W. C., Kraus, V. B., Huebner, J. L., Boyd, L. M., and Setton, L. A. (2009) Decreased physical function and increased pain sensitivity in mice deficient for type IX collagen Arthritis Rheum 60, 2684–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Roberts, A. C., Diez-Garcia, J., Rodriguiz, R. M., López, I. P., Luján, R., Martínez-Turrilas, R., Picó, E., Henson, M. A., Bernardo, D. R., Jarrett, T. M., Clendeninn, D. J., López-Mascaraque, L., Feng, G., Lo, D. C., Wesseling, J. F., Wetsel, W. C., Philpot, B. D., and Pérez-Otaño, I. (2009) Down-regulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation Neuron 63, 342–56.PubMedCrossRefGoogle Scholar
  18. 18.
    Crooks, K. R., Kleven, D. T., Rodriguiz, R. M., Wetsel, W. C., and McNamara, J. O. (2010) TrkB signaling is required for development of the sensitizing and drug seeking effects of cocaine Neuropharmacology 58, 1067–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Gariépy, J.-L., and Rodriguiz, R. M. (2002) Issues of establishment, consolidation, and reorganization in biobehavioral adaptation Mind Brain 3, 53–77.CrossRefGoogle Scholar
  20. 20.
    Rissman, E. F., Wersinger, S. R., Fugger, H. N., and Foster, T. C. (1999) Sex with knockout models: Behavioral studies of estrogen receptor α Brain Res 835, 80–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Cairns, R. B., and Scholz, S. D. (1973) Fighting in mice: Dyadic escalation and what is learned J Comp Physiol Psychol 85, 540–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Scott, J. P. (1958) Aggression, University of Chicago Press, Chicago, IL.Google Scholar
  23. 23.
    Arakawa, H., Blanchard, D. C., Arakawa, K., Dunlap, C., and Blanchard, R. J. (2008) Scent marking behavior as an odorant communication in mice Neurosci Biobehav Rev 32, 1236–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Sisk, C. L., and Zehr, J. L. (2005) Pubertal hormones organize the adolescent brain and behaviour Front Neuroendocrinol 26, 163–74.PubMedCrossRefGoogle Scholar
  25. 25.
    McGill, T. E. (1962) Sexual behavior in three inbred strains of mice Behaviour 19, 341–50.CrossRefGoogle Scholar
  26. 26.
    Svare, B., and Gandelman, R. (1973) Postpartum aggression in mice: Experiential and environmental factors Horm Behav 4, 323–34.CrossRefGoogle Scholar
  27. 27.
    Weber, E. M., and Olsson, A. S. (2008) Maternal behaviour in Mus musculus: An ethological review Appl Anim Behav Sci 114, 1–22.CrossRefGoogle Scholar
  28. 28.
    Hofer, M. A., Brunelli, S. A., Masmela, J. R., and Shair, H. N. (1996) Maternal interactions prior to separation potentiate isolation-induced calling in rat pups Behav Neurosci 110, 1158–67.PubMedCrossRefGoogle Scholar
  29. 29.
    D‘Amato, F. R. D., Scalera, E., Sarli, C., and Moles, A. (2005) Pups call, mothers rush: Does maternal responsiveness affect the amount of ultrasonic vocalizations in mouse pups Behav Genetics 35, 103–12.CrossRefGoogle Scholar
  30. 30.
    Francis, D. D., Diorio, J., Lui, D., and Meaney, M. J. (1999) Non-genomic transmission across generations of maternal behavior and stress response in the rat Science 286, 1155–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Meaney, M. J., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., Sharma, S., Seckl, J. R., and Plotsky, P. M. (1996) Early environmental regulation of forebrain glucocorticoid receptor gene expression: Implications for adrenocortical responses to stress Develop Neurosci 18, 49–72.CrossRefGoogle Scholar
  32. 32.
    Sales, G., and Pye, D. (1974) Ultrasonic Communication by Animals, Chaucer Press, Richard Clay, Ltd., Bungay, Suffolk, pp. 149–201.Google Scholar
  33. 33.
    Branchi, I., Santucci, D., Vitale, A., and Alleva, E. (1998) Ultrasonic vocalizations by infant laboratory mice: A preliminary spectrographic characterization under different conditions Dev Psychobiol 33, 249–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Hofer, M. A., Shair, H. N., and Brunelli, S. A. (2001) Ultrasonic vocalizations in rat and mouse pups Curr Protocols Neurosci 8, 114.1–114.16.Google Scholar
  35. 35.
    Holy, T. E., and Guo, Z. (2005) Ultrasonic songs of male mice PLoS Biol 3, 2177–86.CrossRefGoogle Scholar
  36. 36.
    Litvin, Y., Blanchard, D. C., and Blanchard, R. J. (2007) Rat 22 kHz ultrasonic vocalizations as alarm cries Behav Brain Res 182, 166–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Nyby, J. (1983) Ultrasonic vocalizations during sex behavior of male house mice (Mus musculus): A description Behav Neural Biol 39, 128–34.PubMedCrossRefGoogle Scholar
  38. 38.
    Pomerantz, S. M., Nunex, A. A., and Bean, N. J. (1983) Female behavior is affected by male ultrasonic vocalizations in house mice Physiol Behav 31, 91–6.PubMedCrossRefGoogle Scholar
  39. 39.
    D’Amato, F. R., and Moles, A. (2001) Ultrasonic vocalizations as an index of social memory in female mice Behav Neurosci 115, 834–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Moles, A., and D’Amato, F. R. (2000) Ultrasonic vocalization by female mice in the presence of a conspecific carrying food cues Anim Behav 60, 689–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Bell, R., and Smotherman, W. P. (1980) Maternal Influences and Early Behavior, SP Medical & Scientific Books, New York, NY.Google Scholar
  42. 42.
    Allen, E. (1922) The oestrous cycle in the mouse Am J Anat 30, 297–371.CrossRefGoogle Scholar
  43. 43.
    Champlin, A. K., and Dorr, D. L. (1973) Determining the stage of estrous cycle in the mouse by the appearance of the vagina Biol Reprod 8, 491–4.PubMedGoogle Scholar
  44. 44.
    Gendreau, P. L., Petitto, J. M., Gariepy, J.-L., and Lewis, M. H. (1997) D1 dopamine receptor mediation of social and nonsocial emotional reactivity in mice: Effects of housing and strain difference in motor activity Behav Neurosci 111, 424–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ramona M. Rodriguiz
    • 1
  • Jennifer S. Colvin
    • 2
  • William C. Wetsel
    • 3
  1. 1.Department of Psychiatry and Behavioral Sciences and Mouse Behavioral and Neuroendocrine Analysis Core FacilityDuke University Medical CenterDurhamUSA
  2. 2.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA
  3. 3.Department of Psychiatry and Behavioral Sciences, Cell Biology, and NeurobiologyMouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical CenterDurhamUSA

Personalised recommendations