Advertisement

In Vivo Evaluation of Putative Hematopoietic Stem Cells Derived from Human Pluripotent Stem Cells

  • Melinda K. Hexum
  • Xinghui Tian
  • Dan S. Kaufman
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 767)

Abstract

Efficient derivation and isolation of hematopoietic stem cells (HSCs) from human pluripotent stem cell (hPSC) populations remains a major goal in the field of developmental hematopoiesis. These enticing pluripotent stem cells (comprising both human embryonic stem cells and induced pluripotent stem cells) have been successfully used to generate a wide array of hematopoietic cells in vitro, from primitive hematoendothelial precursors to mature myeloid, erythroid, and lymphoid lineage cells. However, to date, PSC-derived cells have demonstrated only limited potential for long-term multilineage hematopoietic engraftment in vivo – the test by which putative HSCs are defined. Successful generation and characterization of HSCs from hPSCs not only requires an efficient in vitro differentiation system that provides insight into the developmental fate of hPSC-derived cells, but also necessitates an in vivo engraftment model that allows identification of specific mechanisms that hinder or promote hematopoietic engraftment. In this chapter, we will describe a method that utilizes firefly luciferase-expressing hPSCs and bioluminescent imaging to noninvasively track the survival, proliferation, and migration of transplanted hPSC-derived cells. Combined with lineage and functional analyses of engrafted cells, this system is a useful tool to gain insight into the in vivo potential of hematopoietic cells generated from hPSCs.

Key words

hPSCs hematopoiesis HSCs bioluminescent imaging transplantation 

References

  1. 1.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts, Science 282, 1145–1147.PubMedCrossRefGoogle Scholar
  2. 2.
    Odorico, J. S., Kaufman, D. S., and Thomson, J. A. (2001) Multilineage differentiation from human embryonic stem cell lines, Stem Cells 19, 193–204.PubMedCrossRefGoogle Scholar
  3. 3.
    Thomas, E. D. (1999) Bone marrow transplantation: a review, Semin Hematol 36, 95–103.PubMedGoogle Scholar
  4. 4.
    Korbling, M., and Anderlini, P. (2001) Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter?, Blood 98, 2900–2908.PubMedCrossRefGoogle Scholar
  5. 5.
    Brunstein, C. G., and Wagner, J. E. (2006) Umbilical cord blood transplantation and banking, Annu Rev Med 57, 403–417.PubMedCrossRefGoogle Scholar
  6. 6.
    Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R., and Thomson, J. A. (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells, Proc Natl Acad Sci USA 98, 10716–10721.PubMedCrossRefGoogle Scholar
  7. 7.
    Tian, X., Morris, J. K., Linehan, J. L., and Kaufman, D. S. (2004) Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells, Exp Hematol 32, 1000–1009.PubMedCrossRefGoogle Scholar
  8. 8.
    Woll, P. S., Morris, J. K., Painschab, M. S., Marcus, R. K., Kohn, A. D., Biechele, T. L., Moon, R. T., and Kaufman, D. S. (2008) Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells, Blood 111, 122–131.PubMedCrossRefGoogle Scholar
  9. 9.
    Vodyanik, M. A., Bork, J. A., Thomson, J. A., and Slukvin, II. (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential, Blood 105, 617–626.PubMedCrossRefGoogle Scholar
  10. 10.
    Ledran, M. H., Krassowska, A., Armstrong, L., Dimmick, I., Renstrom, J., Lang, R., Yung, S., Santibanez-Coref, M., Dzierzak, E., Stojkovic, M., Oostendorp, R. A., Forrester, L., and Lako, M. (2008) Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches, Cell Stem Cell 3, 85–98.PubMedCrossRefGoogle Scholar
  11. 11.
    Lengerke, C., Grauer, M., Niebuhr, N. I., Riedt, T., Kanz, L., Park, I. H., and Daley, G. Q. (2009) Hematopoietic development from human induced pluripotent stem cells, Ann N Y Acad Sci 1176, 219–227.PubMedCrossRefGoogle Scholar
  12. 12.
    Choi, K. D., Vodyanik, M. A., and Slukvin, II. (2009) Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34  +  CD43  +  CD45+ progenitors, J Clin Invest 119, 2818–2829.PubMedCrossRefGoogle Scholar
  13. 13.
    Ng, E. S., Davis, R., Stanley, E. G., and Elefanty, A. G. (2008) A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies, Nat Protoc 3, 768–776.PubMedCrossRefGoogle Scholar
  14. 14.
    Ng, E. S., Davis, R. P., Azzola, L., Stanley, E. G., and Elefanty, A. G. (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation, Blood 106, 1601–1603.PubMedCrossRefGoogle Scholar
  15. 15.
    Ng, E. S., Davis, R. P., Hatzistavrou, T., Stanley, E. G., and Elefanty, A. G. (2008) Directed differentiation of human embryonic stem cells as spin embryoid bodies and a description of the hematopoietic blast colony forming assay, Curr Protoc Stem Cell Biol Chapter 1, Unit 1D 3.Google Scholar
  16. 16.
    Bauwens, C. L., Peerani, R., Niebruegge, S., Woodhouse, K. A., Kumacheva, E., Husain, M., and Zandstra, P. W. (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories, Stem Cells 26, 2300–2310.PubMedCrossRefGoogle Scholar
  17. 17.
    Olivier, E. N., Qiu, C., Velho, M., Hirsch, R. E., and Bouhassira, E. E. (2006) Large-scale production of embryonic red blood cells from human embryonic stem cells, Exp Hematol 34, 1635–1642.PubMedCrossRefGoogle Scholar
  18. 18.
    Anderson, J. S., Bandi, S., Kaufman, D.S. (2006) Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy, Retrovirology 3.Google Scholar
  19. 19.
    Gaur, M., Kamata, T., Wang, S., Moran, B., Shattil, S. J., and Leavitt, A. D. (2006) Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function, J Thromb Haemost 4, 436–442.PubMedCrossRefGoogle Scholar
  20. 20.
    Woll, P. S., Martin, C. H., Miller, J. S., and Kaufman, D. S. (2005) Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity, J Immunol 175, 5095–5103.PubMedGoogle Scholar
  21. 21.
    Vormoor, J., Lapidot, T., Pflumio, F., Risdon, G., Patterson, B., Broxmeyer, H. E., and Dick, J. E. (1994) SCID mice as an in vivo model of human cord blood hematopoiesis, Blood Cells 20, 316–320; discussion 320–312.Google Scholar
  22. 22.
    Lapidot, T., Pflumio, F., Doedens, M., Murdoch, B., Williams, D. E., and Dick, J. E. (1992) Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice, Science 255, 1137–1141.PubMedCrossRefGoogle Scholar
  23. 23.
    Bhatia, M., Wang, J. C., Kapp, U., Bonnet, D., and Dick, J. E. (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice, Proc Natl Acad Sci USA 94, 5320–5325.PubMedCrossRefGoogle Scholar
  24. 24.
    Larochelle, A., Vormoor, J., Hanenberg, H., Wang, J. C., Bhatia, M., Lapidot, T., Moritz, T., Murdoch, B., Xiao, X. L., Kato, I., Williams, D. A., and Dick, J. E. (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy, Nat Med 2, 1329–1337.PubMedCrossRefGoogle Scholar
  25. 25.
    Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I., and Dick, J. E. (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity, Nat Med 4, 1038–1045.PubMedCrossRefGoogle Scholar
  26. 26.
    Kimura, T., Asada, R., Wang, J., Morioka, M., Matsui, K., Kobayashi, K., Henmi, K., Imai, S., Kita, M., Tsuji, T., Sasaki, Y., Ikehara, S., and Sonoda, Y. (2007) Identification of long-term repopulating potential of human cord blood-derived CD34-flt3- severe combined immunodeficiency-repopulating cells by intra-bone marrow injection, Stem Cells 25, 1348–1355.PubMedCrossRefGoogle Scholar
  27. 27.
    Hogan, C. J., Shpall, E. J., and Keller, G. (2002) Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice, Proc Natl Acad Sci USA 99, 413–418.PubMedCrossRefGoogle Scholar
  28. 28.
    de Wynter, E. A., Buck, D., Hart, C., Heywood, R., Coutinho, L. H., Clayton, A., Rafferty, J. A., Burt, D., Guenechea, G., Bueren, J. A., Gagen, D., Fairbairn, L. J., Lord, B. I., and Testa, N. G. (1998) CD34  +  AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors, Stem Cells 16, 387–396.Google Scholar
  29. 29.
    Tian, X., Woll, P. S., Morris, J. K., Linehan, J. L., and Kaufman, D. S. (2006) Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity, Stem Cells 24, 1370–1380.PubMedCrossRefGoogle Scholar
  30. 30.
    Narayan, A. D., Chase, J. L., Lewis, R. L., Tian, X., Kaufman, D. S., Thomson, J. A., and Zanjani, E. D. (2006) Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients, Blood 107, 2180–2183.PubMedCrossRefGoogle Scholar
  31. 31.
    Lu, S. J., Feng, Q., Caballero, S., Chen, Y., Moore, M. A., Grant, M. B., and Lanza, R. (2007) Generation of functional hemangioblasts from human embryonic stem cells, Nat Methods 4, 501–509.PubMedCrossRefGoogle Scholar
  32. 32.
    Ji, J., Vijayaragavan, K., Bosse, M., Menendez, P., Weisel, K., and Bhatia, M. (2008) OP9 stroma augments survival of hematopoietic precursors and progenitors during hematopoietic differentiation from human embryonic stem cells, Stem Cells 26, 2485–2495.PubMedCrossRefGoogle Scholar
  33. 33.
    Tian, X., Hexum, M. K., Penchev, V. R., Taylor, R. J., Shultz, L. D., and Kaufman, D. S. (2009) Bioluminescent imaging demonstrates that transplanted human embryonic stem cell-derived CD34(+) cells preferentially develop into endothelial cells, Stem Cells 27, 2675–2685.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, L., Menendez, P., Shojaei, F., Li, L., Mazurier, F., Dick, J. E., Cerdan, C., Levac, K., and Bhatia, M. (2005) Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression, J Exp Med 201, 1603–1614.PubMedCrossRefGoogle Scholar
  35. 35.
    Wilber, A., Linehan, J. L., Tian, X., Woll, P. S., Morris, J. K., Belur, L. R., McIvor, R. S., and Kaufman, D. S. (2007) Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer, Stem Cells 25, 2919–2927.PubMedCrossRefGoogle Scholar
  36. 36.
    Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D., and Carpenter, M. K. (2001) Feeder-free growth of undifferentiated human embryonic stem cells, Nat Biotechnol 19, 971–974.PubMedCrossRefGoogle Scholar
  37. 37.
    Tian, X., and Kaufman, D. S. (2008) Hematopoietic development of human embryonic stem cells in culture, Methods Mol Biol 430, 119–133.PubMedCrossRefGoogle Scholar
  38. 38.
    Vodyanik, M. A., and Slukvin, II. (2007) Hematoendothelial differentiation of human embryonic stem cells, Curr Protoc Cell Biol Chapter 23, Unit 23 26.Google Scholar
  39. 39.
    Pearson, T., Greiner, D. L., and Shultz, L. D. (2008) Creation of “humanized” mice to study human immunity, Curr Protoc Immunol Chapter 15, Unit 15 21.Google Scholar
  40. 40.
    Johnson, S. A., and Yoder, M. C. (2005) Reconstitution of hematopoiesis following transplantation into neonatal mice, Methods Mol Med 105, 95–106.PubMedGoogle Scholar
  41. 41.
    Hiramatsu, H., Nishikomori, R., Heike, T., Ito, M., Kobayashi, K., Katamura, K., and Nakahata, T. (2003) Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model, Blood 102, 873–880.PubMedCrossRefGoogle Scholar
  42. 42.
    Yahata, T., Ando, K., Nakamura, Y., Ueyama, Y., Shimamura, K., Tamaoki, N., Kato, S., and Hotta, T. (2002) Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice, J Immunol 169, 204–209.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Melinda K. Hexum
    • 1
  • Xinghui Tian
    • 1
  • Dan S. Kaufman
    • 2
  1. 1.Department of Medicine and Stem Cell InstituteUniversity of MinnesotaMinneapolisUSA
  2. 2.Hematology, Oncology and Transplantation, Department of Medicine and Stem Cell InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations