Human Pluripotent Stem Cells pp 333-341

Part of the Methods in Molecular Biology book series (MIMB, volume 767)

Nucleofection of Human Embryonic Stem Cells

  • Helen Fong
  • K. A. Hohenstein Elliott
  • Leslie F. Lock
  • Peter J. Donovan
Protocol

Abstract

The ability to realize the full potential of human pluripotent stem cells (hPSCs) as tools for ­understanding human development and advancing the field of regenerative medicine is dependent on efficient methods to genetically manipulate these cells. There are several methods for introducing foreign DNA into cells such as electroporation, lipid-based transfection technology, and viral transduction. We describe here a method to transfect human embryonic stem cells (hESCs) using nucleofection technology. This unique method uses the Nucleofector II Device that combines the use of a cell type-specific Nucleofector Solution and preprogrammed electrical parameters to efficiently deliver DNA into the cell nucleus. The use of this technology allows high-efficiency transfer of nucleic acids into hESCs enabling both transient and stable manipulation of gene expression in these cells.

Key words

human embryonic stem cells pluripotent stem cells nucleofection transfection transgene expression RNA interference neurotrophins 

References

  1. 1.
    Donovan, P. J., Gearhart, J. (2001) The end of the beginning for pluripotent stem cells Nature 414, 92–7.Google Scholar
  2. 2.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts Science 282, 1145–7.Google Scholar
  3. 3.
    Trounson, A., Pera, M. (2001) Human embryonic stem cells Fertil Steril 76, 660–1.Google Scholar
  4. 4.
    Hohenstein, K. A., Pyle, A. D., Chern, J. Y., Lock, L. F., Donovan, P. J. (2008) Nucleofection mediates high-efficiency stable gene knockdown and transgene expression in human embryonic stem cells Stem Cells 26, 1436–43.Google Scholar
  5. 5.
    Lakshmipathy, U., Pelacho, B., Sudo, K., et al. (2004) Efficient transfection of ­embryonic and adult stem cells Stem Cells 22, 531–43.Google Scholar
  6. 6.
    Kobayashi, N., Rivas-Carrillo, J. D., Soto-Gutierrez, A., et al. (2005) Gene delivery to embryonic stem cells Birth Defects Res C Embryo Today 75, 10–8.Google Scholar
  7. 7.
    Pyle, A. D., Lock, L. F., Donovan, P. J. (2006) Neurotrophins mediate human embryonic stem cell survival Nat Biotechnol 24, 344–50.Google Scholar
  8. 8.
    Watanabe K., Ueno M., Kamiya D., et al. (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells Nat Biotechnol 25, 681–6.Google Scholar
  9. 9.
    Fong, H., Hohenstein, K. A., Donovan, P. J. (2008) Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells Stem Cells 26,1931–8.Google Scholar
  10. 10.
    Tschuch C, Schulz A, Pscherer A, et al. (2008) Off-target effects of siRNA specific for GFP BMC Mol Biol 9, 60.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Helen Fong
    • 1
  • K. A. Hohenstein Elliott
    • 2
  • Leslie F. Lock
    • 3
  • Peter J. Donovan
    • 3
  1. 1.Department of Biological Chemistry, Sue and Bill Gross Stem Cell Research Center, School of MedicineUniversity of California, IrvineIrvineUSA
  2. 2.Peter Donovan Lab, Human Genetics and Molecular Biology, McKusick-Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Departments of Biological Chemistry and Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, School of Biological SciencesUniversity of California, IrvineIrvineUSA

Personalised recommendations