Advertisement

High-Throughput Transposon Mutagenesis of Corynebacterium glutamicum

  • Nobuaki Suzuki
  • Masayuki Inui
  • Hideaki Yukawa
Part of the Methods in Molecular Biology book series (MIMB, volume 765)

Abstract

Construction of gene disruption mutants and analysis of the resultant phenotypes are an important strategy to study gene function. A simple and high-throughput method developed for microorganisms combines two different types of transposons, direct genomic DNA amplification and thermal asymmetric interlaced-PCR. The considerable utility of this approach is demonstrable in Corynebacterium glutamicum, where 18,000 transposon disruptants enabled the generation of an insertion library covering nearly 80% of the organism’s 2,990 ORFs.

Key words

Transposon Mutagenesis Genome Disruptant library TAIL-PCR Corynebacterium glutamicum High throughput Phi29 Rolling circle DNA amplification 

Notes

Acknowledgments

We wish to thank Dr. C. Omumasaba for critical reading of the manuscript. This research was partly supported by New Energy and Industrial Technology Development Organization (NEDO), Japan.

References

  1. 1.
    Dean F. B., Nelson J. R., Giesler T. L., and Lasken R. S. (2001) Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and 5 multiply-primed rolling circle amplification. Genome Res. 11, 10951099.PubMedCrossRefGoogle Scholar
  2. 2.
    Knobloch J. K., Nedelmann M., Kiel K., Bartscht K., Horstkotte M. A., Dobinsky S., Rohde H., and Mack D. (2003) Establishment of an arbitrary PCR for rapid identification of Tn917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl. Environ. Microbiol. 69, 58125818.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu Y. G., Mitsukawa N., Oosumi T., and Whittier R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457463.PubMedCrossRefGoogle Scholar
  4. 4.
    Vertès A. A., Asai Y., Inui M., Kobayashi M., Kurusu Y., and Yukawa H. (1994) Transposon mutagenesis of coryneform bacteria. Mol. Gen. Genet. 245, 397405.PubMedCrossRefGoogle Scholar
  5. 5.
    Vertès A. A., Inui M., Kobayashi M., Kurusu Y., and Yukawa H. (1994) Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum. Mol. Microbiol. 11, 739746.PubMedCrossRefGoogle Scholar
  6. 6.
    Goryshin I. Y. and Reznikoff W. S. (1998) Tn5 in vitro transposition. J. Biol. Chem. 273, 73677374.PubMedCrossRefGoogle Scholar
  7. 7.
    Goryshin I. Y., Miller J. A., Kil Y. V., Lanzov V. A., and Reznikoff W. S. (1998) Tn5/IS50 target recognition. Proc. Natl. Acad. Sci. U. S. A. 95, 1071610721.PubMedCrossRefGoogle Scholar
  8. 8.
    Oram D. M., Avdalovic A., and Holmes R. K. (2002) Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J. Bacteriol. 184, 57235732.PubMedCrossRefGoogle Scholar
  9. 9.
    Goryshin I. Y., Jendrisak J. L., Hoffman M., Meis R., and Reznikoff W. S. (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18, 97100.PubMedCrossRefGoogle Scholar
  10. 10.
    Herron P. R., Hughes G., Chandra G., Fielding S., and Dyson P. J. (2004) Transposon Express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition into GC-rich DNA. Nucleic. Acids. Res. 32, e113.PubMedCrossRefGoogle Scholar
  11. 11.
    Suzuki N., Okai N., Nonaka H., Tsuge Y., Inui M., and Yukawa H. (2006) High throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl. Environ. Microbiol. 72, 3750–3755.PubMedCrossRefGoogle Scholar
  12. 12.
    Vertès A. A., Inui M., Kobayashi M., Kurusu Y., Yukawa H. (1993) Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res. Microbiol. 144, 181–185.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Research Institute of Innovative Technology for the Earth (RITE)Kizugawa-ShiJapan

Personalised recommendations