Therapeutic Oligonucleotides pp 107-121

Part of the Methods in Molecular Biology book series (MIMB, volume 764) | Cite as

Light-Directed Delivery of Nucleic Acids

  • Sigurd Bøe
  • Lina Prasmickaite
  • Birgit Engesæter
  • Eivind Hovig
Protocol

Abstract

A major barrier within the field of non-viral gene therapy toward therapeutic strategies, e.g., tumor therapy, has been lack of appropriate specific delivery strategies to the intended target tissues or cells. In this chapter, we describe a protocol for light-directed delivery of nucleic acids through the use of photochemical internalization (PCI) technology. PCI is based on a photosensitizing compound that localizes to endocytic membranes. Upon illumination, the photosensitizing compound induces damage to the endocytic membranes, resulting in release of endocytosed material, i.e., nucleic acids into cytosol. The main benefit of the strategy described is the possibility for site-specific delivery of nucleic acids to a place of interest.

Key words

Light-directed delivery PCI nucleic acids photosensitizer endosomal pathway singlet oxygen 

References

  1. 1.
    de Duve, C. (1963) Lysosomes. In: A. V. S. de Reuck and M. P. Cameron (eds) Ciba Foundation Symposium. Churchill, London, pp. 411–412.Google Scholar
  2. 2.
    Lloyd, J. B. (2000) Lysosome membrane permeability: implications for drug delivery. Advanced Drug Delivery Reviews 41, 189–200.PubMedCrossRefGoogle Scholar
  3. 3.
    Felgner, P. L., Gadek, T. R., Holm, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceeding of. National Academy of Science USA 84, 7413–7417.CrossRefGoogle Scholar
  4. 4.
    Boussif, O., Lezoualc’h, F., Zanta, M. A., et al. (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceeding of National Academy of Science USA 92, 7297–7301.CrossRefGoogle Scholar
  5. 5.
    Read, M. L., Logan, A., and Seymour, L. W. (2005) Barriers to gene delivery using synthetic vectors. Advances in Genetics 53PA, 19–46.PubMedCrossRefGoogle Scholar
  6. 6.
    Sioud, M. (2007) RNA interference and innate immunity. Advanced Drug Delivery Reviews 59, 153–163.PubMedCrossRefGoogle Scholar
  7. 7.
    Pirollo, K. F., and Chang, E. H. (2008) Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Research 68, 1247–1250.PubMedCrossRefGoogle Scholar
  8. 8.
    Bøe, S., Longva, A. S., and Hovig, E. (2008) Evaluation of various polyethylenimine formulations for light-controlled gene silencing using small interfering RNA molecules. Oligonucleotides 18, 23–32.CrossRefGoogle Scholar
  9. 9.
    Bøe, S., and Hovig, E. (2006) photochemically induced gene silencing using PNA-peptide conjugates. Oligonucleotides 16, 145–157.PubMedCrossRefGoogle Scholar
  10. 10.
    Bøe, S., Longva, A. S., and Hovig E. (2007) Photochemically induced gene silencing using small interfering RNA molecules in combination with lipid carriers. Oligonucleotides 17, 166–173.PubMedCrossRefGoogle Scholar
  11. 11.
    Bøe, S., Saeboe-Larssen, S., and Hovig E. (2010) Light-induced gene expression using messenger RNA molecules. Oligonucleotides 20(1), 1–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Bøe, S., and Hovig E. (2008) Method for introducing siRNA into cells by photochemical internalisation. WO/2008/007073Google Scholar
  13. 13.
    Bøe, S., Hovig, E., and Fodstad, O. (2006) Method for introducing a PNA molecule conjugated to a positively charged peptide into the cytosol and/or the nucleus by photochemical internalisation (PCI). WO/ 2006/003463, PCT/GB2005/002679.Google Scholar
  14. 14.
    Folini, M., Berg, K., Millo E, et al. (2003) Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Research 63, 3490–3494.PubMedGoogle Scholar
  15. 15.
    Folini, M., Bandiera, R, Millo E, et al. (2007) Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting human telomerase reverse transcriptase: effects on telomere status and proliferative potential of human prostate cancer cells. Cell Proliferation 40, 905–920.PubMedCrossRefGoogle Scholar
  16. 16.
    Shiraishi, T., and Nielsen, P. E. (2006) Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates. FEBS Letters 580, 1451–1456.PubMedCrossRefGoogle Scholar
  17. 17.
    Oliveira, S., Fretz, M. M., Hogset, A., Storm, G., and Schiffelers, R. M. (2007) Photochemical internalization enhances silencing of epidermal growth factor receptor through improved endosomal escape of siRNA. Biochimica et Biophysica Acta 1768, 1211–1217.PubMedCrossRefGoogle Scholar
  18. 18.
    Oliveira, S., Hogset, A., Storm, G., and Schiffelers, R. M. (2008) Delivery of siRNA to the target cell cytoplasm: photochemical internalization facilitates endosomal escape and improves silencing efficiency, in vitro and in vivo. Current Pharmaceutical Design 14, 3686–3697.PubMedCrossRefGoogle Scholar
  19. 19.
    Berg, K., Selbo, P. K., Prasmickaite, L., et al. (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Research 59, 1180–1183.PubMedGoogle Scholar
  20. 20.
    Berg, K., and Moan, J. (1994) Lysosomes as photochemical targets. International Journal of Cancer 59, 814–822.CrossRefGoogle Scholar
  21. 21.
    Moan, J., Berg, K., Anholt, H., and Madslien, K. (1994) Sulfonated aluminium phthalocyanines as sensitizers for photochemotherapy. Effects of small light doses on localization, dye fluorescence and photosensitivity in V79 cells. International Journal of Cancer 58, 865–870.CrossRefGoogle Scholar
  22. 22.
    Gibson, S. L., Murant, R. S., and Hilf, R. (1988) R. Photosensitizing effects of hematoporphyrin derivative and photofrin II on the plasma membrane enzymes 5'-nucleotidase, Na+K+-ATPase, and Mg2+-ATPase in R3230AC mammary adenocarcinomas. Cancer Research 48, 3360–3366.PubMedGoogle Scholar
  23. 23.
    Moan, J, Johannessen, J. V., Christensen, T., Espevik, T., and McGhie, J. B. (1982) Porphyrin-sensitized photoinactivation of human cells in vitro. The American Journal of Pathology 109, 184–192.PubMedGoogle Scholar
  24. 24.
    Boegheim, J. P., Dubbelman, T. M., Mullenders, L. H., and Van Steveninck, J. (1987) Photodynamic effects of haematoporphyrin derivative on DNA repair in murine L929 fibroblasts. The Biochemical Journal 244, 711–715.PubMedGoogle Scholar
  25. 25.
    Gomer, C. J., Rucker, N., Banerjee, A., and Benedict, W. F. (1983) Comparison of mutagenicity and induction of sister chromatid exchange in Chinese hamster cells exposed to hematoporphyrin derivative photoradiation, ionizing radiation, or ultraviolet radiation. Cancer Research 43, 2622–2627.PubMedGoogle Scholar
  26. 26.
    Berns, M. W., Dahlman, A., Johnson, F. M., et al. (1982) In vitro cellular effects of hematoporphyrin derivative. Cancer Research 42, 2325–2329.PubMedGoogle Scholar
  27. 27.
    Hilf, R., Murant, R. S., Narayanan, U., and Gibson, S. L. (1986) Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative-induced photosensitization in R3230AC mammary tumors. Cancer Research 46, 211–217.PubMedGoogle Scholar
  28. 28.
    van Dongen, G. A., Visser, G. W., and Vrouenraets, M. B. (2004) Photosensitizer-antibody conjugates for detection and therapy of cancer. Advanced Drug Delivery Reviews 56, 31–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Berg, K., Western, A., Bommer, J. C., and Moan, J. (1990) Intracellular localization of sulfonated meso-tetraphenylporphines in a human carcinoma cell line. Photochemistry and Photobiology 52, 481–487.PubMedCrossRefGoogle Scholar
  30. 30.
    Moan, J., Berg, K., Kvam, E., et al. (1989) Intracellular localization of photosensitizers; discussion 11. Ciba Foundation Symposium 146, 95–107.PubMedGoogle Scholar
  31. 31.
    Moan, J., Berg, K., Bommer, J. C., and Western, A. (1992) Action spectra of phthalocyanines with respect to photosensitization of cells. Photochemistry and Photobiology 56, 171–175.PubMedCrossRefGoogle Scholar
  32. 32.
    Prasmickaite, L., Hogset, A., and Berg, K. (2001) Evaluation of different photosensitizers for use in photochemical gene transfection. Photochemistry and Photobiology 73, 388–395.PubMedCrossRefGoogle Scholar
  33. 33.
    Maman, N., Dhami, S., Phillips, D., and Brault, D. (1999) Kinetic and equilibrium studies of incorporation of di-sulfonated aluminum phthalocyanine into unilamellar vesicles. Biochimica et Biophysica Acta 1420, 168–178.PubMedCrossRefGoogle Scholar
  34. 34.
    Moan, J., and Berg, K. (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochemistry and Photobiology 53, 549–553.PubMedCrossRefGoogle Scholar
  35. 35.
    Pass, H. I. (1993) Photodynamic therapy in oncology: mechanisms and clinical use. Journal of the National Cancer Institute 85, 443–456.PubMedCrossRefGoogle Scholar
  36. 36.
    Mang, T. S. (2004) Lasers and light sources for PDT: past, present and future. Photodiagnosis and Photodynamic Therapy 1, 43–48.CrossRefGoogle Scholar
  37. 37.
    Ndoye, A., Dolivet, G., Hogset, A., et al. (2006) Eradication of p53-mutated head and neck squamous cell carcinoma xenografts using nonviral p53 gene therapy and photochemical internalization. Molecualr Therapy 13, 1156–1162.CrossRefGoogle Scholar
  38. 38.
    Prasmickaite, L., Hogset, A., Tjelle, T. E., Olsen. V. M., and Berg, K. (2000) Role of endosomes in gene transfection mediated by photochemical internalisation (PCI). The Journal of Gene Medicine 2, 477–488.PubMedCrossRefGoogle Scholar
  39. 39.
    Engesaeter, B. O., Bonsted, A., Lillehammer, T., Engebraaten, O., Berg, K., and Maelandsmo, G. M. (2006) Photochemically mediated delivery of AdhCMV-TRAIL augments the TRAIL-induced apoptosis in colorectal cancer cell lines. Cancer Biology & Therapy 5, 1511–1520.CrossRefGoogle Scholar
  40. 40.
    Hogset, A., Ovstebo Engesaeter, B., Prasmickaite, L., Berg, K., Fodstad, O., and Maelandsmo, G. M. (2002) Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy. Cancer Gene Therapy 9, 365–371.PubMedCrossRefGoogle Scholar
  41. 41.
    Hogset, A., Prasmickaite, L., Tjelle, T. E., and Berg, K. (2000) Photochemical transfection: a new technology for light-induced, site-directed gene delivery. Human Gene Therapy 11, 869–880.PubMedCrossRefGoogle Scholar
  42. 42.
    Nishiyama, N., Iriyama, A., Jang, W. D., et al. (2005) Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nature Materials 4, 934–941.PubMedCrossRefGoogle Scholar
  43. 43.
    Dietze, A., Peng, Q., Selbo, P. K., et al. (2005) Enhanced photodynamic destruction of a transplantable fibrosarcoma using photochemical internalisation of gelonin. British Journal of Cancer 92, 2004–2009.PubMedCrossRefGoogle Scholar
  44. 44.
    Selbo, P. K., Sivam, G., Fodstad, O., Sandvig, K., and Berg, K. (2001) In vivo documentation of photochemical internalization, a novel approach to site specific cancer therapy. International Journal of Cancer 92, 761–766.CrossRefGoogle Scholar
  45. 45.
    Berg, K., Dietze, A., Kaalhus, O., and Hogset, A. (2005) Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clinical Cancer Research 11, 8476–8485.PubMedCrossRefGoogle Scholar
  46. 46.
    Foote, C. (1987) Type I and Type II mechanisms of photodynamic action. In: J. R. Heitz and K. R. Downnum (eds) Light-Activated Pesticides. American Chemical Society, Washington, DC, pp. 22–38.CrossRefGoogle Scholar
  47. 47.
    Spikes, J. D. (1984) Photobiology of porphyrins. Progress in Clinical and Biological Research 170, 19–39.PubMedGoogle Scholar
  48. 48.
    Selbo, P. K., Hogset, A., Prasmickaite, L., and Berg, K. (2002) Photochemical internalisation: a novel drug delivery system. Tumour Biology 23, 103–112.PubMedCrossRefGoogle Scholar
  49. 49.
    Norum, O. J., Giercksky, K. E., and Berg, K. (2009) Photochemical internalization as an adjunct to marginal surgery in a human sarcoma model. Photochemical and Photobiological Sciences 8, 758–762.PubMedCrossRefGoogle Scholar
  50. 50.
    Brown, S. B., Brown, E. A., and Walker, I. (2004) The present and future role of photodynamic therapy in cancer treatment. The Lancet Oncology 5, 497–508.PubMedCrossRefGoogle Scholar
  51. 51.
    Berg, K., and Moan, J. (1998) Optimization of wavelenghts in photodynamic therapy. In: J. G. Moser (ed) Photodynamic Tumor Therapy, 2nd and 3rd Generation Photosensitizers. Harwood Academic Publishers, London, pp. 151–68.Google Scholar
  52. 52.
    Moan, J., McGhie, J., and Jacobsen, P. B. (1983) Photodynamic effects on cells in vitro exposed to hematoporphyrin derivative and light. Photochemistry and Photobiology 37, 599–604.PubMedCrossRefGoogle Scholar
  53. 53.
    Davies, C. L., Ranheim, T., Malik, Z., Rofstad, E. K., Moan, J., and Lindmo, T. (1988) Relationship between changes in antigen expression and protein synthesis in human melanoma cells after hyperthermia and photodynamic treatment. British Journal of Cancer 58, 306–313.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sigurd Bøe
    • 1
  • Lina Prasmickaite
    • 1
  • Birgit Engesæter
    • 1
  • Eivind Hovig
    • 1
  1. 1.Department of Tumor BiologyInstitute for Cancer Research, The Norwegian Radium HospitalMontebelloNorway

Personalised recommendations