Advertisement

Overview of Cell Synchronization

  • Gaspar BanfalviEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 761)

Abstract

Widespread interest in cell synchronization is maintained by the studies of control mechanisms involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

Key words

Basic concepts of synchronization criteria of synchronization DNA staining DNA analysis C-value 

References

  1. 1.
    Watson, J. D., and Crick, F. H. (1953) Molecular structure of nucleic acids: a structure for deoxyribonucleic acid. Nature 171, 737–738.PubMedGoogle Scholar
  2. 2.
    Howard, A., and Pelc, S. (1953) Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity 6, 261–273.Google Scholar
  3. 3.
    Walker, P. M., and Yates, H. B. (1952) Nuclear components of dividing cells. Proc. R. Soc. Lond. B Biol. Sci. 140, 274–299.PubMedGoogle Scholar
  4. 4.
    Swift, H. (1953) Nucleoproteins in the mitotic cycle. Tex. Rep. Biol. Med. 11, 755–774.PubMedGoogle Scholar
  5. 5.
    Taylor, J. H., Woods, P. S., and Hughes, W. L. (1957) The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc. Natl. Acad. Sci. USA 43, 122–128.PubMedGoogle Scholar
  6. 6.
    Meselson, M., and Stahl, F. W. (1958) The replication of DNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 44, 671–682.PubMedGoogle Scholar
  7. 7.
    Howard, A., and Pelc, S. R. (1951) Nuclear incorporation of P32 as demonstrated by autoradiographs. Exp. Cell Res. 2, 178–187.Google Scholar
  8. 8.
    Baserga R. (1985) The biology of cell reproduction. Harvard University Press, Cambridge, MA.Google Scholar
  9. 9.
    Amon, A. (2002) Synchronization procedures. Methods Enzymol. 351, 457–467.PubMedGoogle Scholar
  10. 10.
    Cooper, S. (2003) Rethinking synchronization of mammalian cells for cell cycle analysis. Cell. Mol. Life Sci. 60, 1099–1106.PubMedGoogle Scholar
  11. 11.
    Coquelle, A., Mouhamad, S., Pequignot, M. O., Braun, T., Carvalho, G., Vivet, S., Métivier, D., Castedo, M., and Kroemer, G. (2006) Enrichment of non-synchronized cells in the G1, S and G2 phases of the cell cycle for the study of apoptosis. Biochem. Pharmacol. 72, 1396–1404.PubMedGoogle Scholar
  12. 12.
    Li, C. J., and Elasser, T. H. (2006) Specific cell cycle synchronization with butyrate and cell cycle analysis by flow cytometry for Madin Darby Bovine Kidney (MDBK) cell line. J. Anim. Vet. Adv. 5, 916–923.Google Scholar
  13. 13.
    Urbani, L., Sherwood, S. W., and Schimke, R. T. (1995) Dissociation of nuclear and cytoplasmic cell cycle progression by drugs employed in cell synchronization. Exp. Cell Res. 219, 159–168.PubMedGoogle Scholar
  14. 14.
    Cooper, S. (2004a) Is whole-culture synchronization biology’s ‘perpetual-motion machine’? Trends Biotechnol. 22, 266–269.PubMedGoogle Scholar
  15. 15.
    Cooper, S. (2004b) Rejoinder: whole-culture synchronization cannot, and does not, synchronize cells. Trends Biotechnol. 22, 274–276.PubMedGoogle Scholar
  16. 16.
    Spellman, P. T., and Sherlock G. (2004a) Reply: whole-culture synchronization – effective tools for cell cycle studies. Trends Biotechnol. 22, 270–273.PubMedGoogle Scholar
  17. 17.
    Spellman, P. T., and Sherlock G. (2004b) Final words: cell age and cell cycle are unlinked. Trends Biotechnol. 22, 277–278.PubMedGoogle Scholar
  18. 18.
    Liu, S. V. (2005) Debating cell-synchronization methodologies: further points and alternative answers. Trends Biotechnol. 23, 9–10.PubMedGoogle Scholar
  19. 19.
    Macdonald, H. R., and Miller, R. G. (1970) Synchronization of mouse L-cells by a velocity sedimentation technique. Biophys. J. 10, 834–842.PubMedGoogle Scholar
  20. 20.
    Durand, R. E. (1975) Isolation of cell subpopulations from in vitro tumor models according to sedimentation velocity. Cancer Res. 35, 1295–1300.PubMedGoogle Scholar
  21. 21.
    Tulp, A., and Welagen, J. J. (1976) Fractionation of ascites tumour cells at 1 g: separation of cells in specific stages of the life cycle. Eur. J. Cancer. 12, 519–526.PubMedGoogle Scholar
  22. 22.
    Mitchison, J. M., and Vincent, W. S. (1965) Preparation of synchronous cell cultures by sedimentation. Nature 205, 987–989.Google Scholar
  23. 23.
    Schindler, R., Ramseier, L., Schaer, J. C., and Grieder, A. (1970) Studies on the division cycle of mammalian cells. 3. Preparation of synchronously dividing cell populations by isotonic sucrose gradient centrifugation. Exp. Cell Res. 59, 90–96.PubMedGoogle Scholar
  24. 24.
    Wolff, D. A., and Pertoft, H. (1972) Separation of HeLa cells by colloidal silica density gradient centrifugation. I. Separation and partial synchrony of mitotic cells. J. Cell Biol. 55, 579–585.PubMedGoogle Scholar
  25. 25.
    Probst, H., and Maisenbacher, J. (1973) Use of zonal centrifugation for preparing synchronous cultures from Ehrlich ascites cells grown in vivo. Exp. Cell Res. 78, 335–344.PubMedGoogle Scholar
  26. 26.
    Banfalvi, G. (2008) Cell cycle synchronization of animal cells and nuclei by centrifugal elutriation. Nat. Protoc. 3, 663–673.PubMedGoogle Scholar
  27. 27.
    Lindahl, P. E. (1956) On counter streaming centrifugation in the separation of cells and cell fragments. Biochim. Biophys. Acta 21, 411–415.PubMedGoogle Scholar
  28. 28.
    Sörenby, L., and Lindahl, P. E. (1964) On the concentrating of ascites tumour cells in stages of pre-mitosis and mitosis by counter-streaming centrifugation. Exp. Cell Res. 35, 214–217.Google Scholar
  29. 29.
    Grabske, R. J., Lake, S., Gledhill, B. L., and Meistrich, M. L. (1975) Centrifugal elutriation: separation of spermatogenic cells on the basis of sedimentation velocity. J. Cell Physiol. 86, 177–189.PubMedGoogle Scholar
  30. 30.
    Meistrich, M. L., Meyn, R. E., and Barlogie, B. (1977) Synchronization of mouse L-P59 cells by centrifugal elutriation separation. Exp. Cell Res. 105, 169–177.PubMedGoogle Scholar
  31. 31.
    Grdina, D. J., Peters, L. J., Jones, S., and Chan, E. (1978) Separation of cells from a murine fibrosarcoma on the basis of size. I. Relationship between cell size and age as modified by growth in vivo or in vitro. J. Natl. Cancer Inst. 61, 209–214.PubMedGoogle Scholar
  32. 32.
    Gohde, W., Meistrich, M. L., Meyn, R. E., Schumann, J., Johnston, D., and Barlogie, B. (1979) Cell-cycle phase-dependence of drug-induced cycle progression delay. J. Histochem. Cytochem. 27, 470–473.PubMedGoogle Scholar
  33. 33.
    Shumaker, V. N. (1967) Zone centrifugation. Adv. Biol. Phys. 11, 245–339.Google Scholar
  34. 34.
    Keng, P. C., Li, C. K. N., and Wheeler, K. T. (1980) Synchronization of 9L rat rain tumor cells by centrifugal elutriation. Cell Biophys. 2, 191–206.PubMedGoogle Scholar
  35. 35.
    Banfalvi, G., Mikhailova, M., Poirier, L. A., and Chou, M. W. (1997) Multiple subphases of DNA replication in Chinese hamster ovary (CHO-K1) cells. DNA Cell Biol. 16, 1493–1498.PubMedGoogle Scholar
  36. 36.
    Rehak, M., Csuka, I., Szepessy, E., and Banfalvi, G. (2000) Subphases of DNA replication in Drosophila cells. DNA Cell Biol. 19, 607–612.PubMedGoogle Scholar
  37. 37.
    Day, A., Schneider, C., and Schneider, B. L. (2004) Yeast cell synchronization. Methods Mol. Biol. Clifton, N.J. 241, 55–76.Google Scholar
  38. 38.
    Grdina, D. J., Meistrich, M. L., Meyn, R. E., Johnson, T. S., and White, R. A. (1984) Cell synchrony techniques. I. A comparison of methods. Cell Tissue Kinet. 17, 223–236.PubMedGoogle Scholar
  39. 39.
  40. 40.
  41. 41.
    Lee, G.-W., Hung, C.-I., Ke, B.-J., Huang, G.-R., Hwei, G.-R., Hwei, B.-H., and Lai, H.-F. (2001) Hydrodynamic focussing for a micromachined flow cytometer. Trans. ASME. 123, 62–679.Google Scholar
  42. 42.
    Fiedler, S., Shirley, S. G., Schnelle, T., and Fuhr, G. (1998) Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 70, 1909–1915.PubMedGoogle Scholar
  43. 43.
    Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H., and Quake, S. R. (1999) A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17, 1109–1111.PubMedGoogle Scholar
  44. 44.
    Gawad, S., Schild, L., and Renaud, P. (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab. Chip. 1, 76–82.PubMedGoogle Scholar
  45. 45.
    Kruger, J., Singh, K., O’Neill, A., Jackson, C., Morrison, A., and O’Brien, P. (2002) Development of a microfluidic device for fluorescence activated cell sorting. J. Micromech. Microeng. 12, 486–494.Google Scholar
  46. 46.
    Schrum, D. P., Culbertson, C. T., Jacobson, S. C., and Ramsey, J. M. (1999) Microchip flow cytometry using electrokinetic focusing. Anal. Chem. 71, 4173–4177.PubMedGoogle Scholar
  47. 47.
    Morgan, H., Holmes, D., and Green, N. G. (2003) 3D focusing of nanoparticles in microfluidic channels. IEE Proc. Nanobiotechnol. 150, 76–81.PubMedGoogle Scholar
  48. 48.
    Holmes, D., Sandison, M. E., Green, N. G., and Morgan, H. (2005) On-chip high-speed sorting of micron-sized particles for high-throughput analysis. IEE Proc. Nanobiotechnol. 152, 129–135.PubMedGoogle Scholar
  49. 49.
    Kim, U., Shu, C. W., Dane, K. Y, Daugherty, P. S, Wang, J. Y., and Soh, H. T. (2007) Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis. Proc. Natl. Acad. Sci. USA 104, 20708–20712.PubMedGoogle Scholar
  50. 50.
    Teresima, T., and Tolmach, L. J. (1963) Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp. Cell Res. 30, 344–362.Google Scholar
  51. 51.
    Thornton, M., Eward, K. L., and Helmstetter, C. E. (2002) Production of minimally disturbed synchronous cultures of hematopoietic cells. Biotechniques 32, 1098–1100.PubMedGoogle Scholar
  52. 52.
    Cooper, S. (2002) Minimally disturbed, multicycle, and reproducible synchrony using a eukaryotic "baby machine". Bioessays 24, 499–501.PubMedGoogle Scholar
  53. 53.
    Merrill, G. F. (1998) Cell synchronization. Methods Cell Biol. 57, 229–249.PubMedGoogle Scholar
  54. 54.
    Mgbonyebi, O. P., Russo, J., and Russo, I. H. (1999) Roscovitine induces cell death and morphological changes indicative of apoptosis in MDA-MB-231 breast cancer cells. Cancer Res. 59, 1903–1910.PubMedGoogle Scholar
  55. 55.
    Rudolph, B., Saffric, J. Z., Henglein, B., Muller, R., Ansorge, W., and Eilers, M. (1996) Activation of cyclin-dependent kinases by Myc mediates induction of cyclin A but not apoptosis. EMBO J. 15, 3065–3076.PubMedGoogle Scholar
  56. 56.
    Azevedo, W. F., Leclerc, S., Meijer, L., Havlicek, I., Strnad, M., and Kim, S. H. (1997) Inhibition of cyclin-dependent kinases by a purine analogs: crystal structure of human cdk2 complexed with roscovitine. Eur. J. Biochem. 243, 518–526.PubMedGoogle Scholar
  57. 57.
    Mosca, P. J., Dijkwel, P. A., and Hamlin, J. L. (1992) The plant amino acid mimosine may inhibit initiation at origins of replication in Chinese hamster cells. Mol. Cell. Biol. 12, 4375–4383.PubMedGoogle Scholar
  58. 58.
    Boquest, A. C., Day, B. N., and Prather, R. S. (1999) Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biol. Reprod. 60, 1013–1019.PubMedGoogle Scholar
  59. 59.
    Al-Meshal, I. A. (1987) Mitodepressive effect of (−)-cathinone, from Catha edulis (khat), on the meristematic region of Allium cepa root tips. Toxicon 4, 451–454.Google Scholar
  60. 60.
    Kabarity, A., El-Bayoumi, A., and Habib, A. A. (1979) Mitodepressive effect and stathmokinetic action of pantopon hydrochloride. Mutat. Res-Gen. Tox. En. 2, 143–148.Google Scholar
  61. 61.
    Kenter, A. L., Watson, J. V., Azim, T., and Rabbitts, T. H. (1986) Colcemid inhibits growth during early G1 in normal but not in tumorigenic lymphocytes. Exp. Cell Res. 167, 241–251.PubMedGoogle Scholar
  62. 62.
    Viegas-Pequiqnot, E., and Dutrillaux, B. (1970) Une methode: simple pour obtenis des prophases et des prometaphases. Ann. Genet. 21, 122–125.Google Scholar
  63. 63.
    Rueckert, R. R., and Mueller, G. C. (1960) Studies on unbalanced growth in tissue culture. I. Induction and consequences of thymidine deficiency. Cancer Res. 20, 1584–1591.PubMedGoogle Scholar
  64. 64.
    Kishimoto, S., and Lieberman, I. (1965) Nuclear membranes of cultured mammalian cells. J. Biol. Chem. 25, 103–107.Google Scholar
  65. 65.
    Adams, R. L. P. (1969) The effect of endogenous pools of thymidylate on the apparent rate of DNA synthesis. Exp. Cell Res. 56, 55–58.PubMedGoogle Scholar
  66. 66.
    Gallo, J. H., Ordomez, J. V., Brown, G. E., and Testa, J. R. (1984) Synchronization of human leukemic cells: relevance for high resolution chromosome banding. Hum. Genet. 66, 220–224.PubMedGoogle Scholar
  67. 67.
    Biegel, J. A., Leslie, D. S., Bigner, D. D., and Bigner, S. H. (1987) Hydroxyurea synchronization increases mitotic yield in human glioma cell lines. Acta Neuropathol. 73, 309–312.PubMedGoogle Scholar
  68. 68.
    Yunis, J. J., Bloomfield, G. D., and Ensrud, K. (1981) All patients with acute nonlymphocytic leukemia may have a chromosomal defect. N. Engl. J. Med. 305, 135–139.PubMedGoogle Scholar
  69. 69.
    Webber, L. M., and Garson, O. M. (1983) Fluorodeoxyuridine synchronization of bone marrow cultures. Cancer Genet. Cytogenet. 8, 123–132.PubMedGoogle Scholar
  70. 70.
    Wright, J. A. (1973) Morphology and growth rate changes in Chinese hamster cells cultured in presence of sodium butyrate. Exp. Cell Res. 78, 456–460.PubMedGoogle Scholar
  71. 71.
    Kruh, J., Defer, N., and Tichonicky, L. (1992) Molecular and cellular action of butyrate. C. R. Seances Soc. Biol. Fil. 186, 12–25.PubMedGoogle Scholar
  72. 72.
    Lampkin, B. C., Nagao, T., and Mauer, A. M. (1971) Synchronization and recruitment in acute leukemia. J. Clin. Invest. 50, 2204–2214.PubMedGoogle Scholar
  73. 73.
    Boucher, B., and Norman, C. S. (1980) Cold synchronization for the study of peripheral blood and bone marrow chromosomes in leukemia and other hematologic disease states. Hum. Genet. 54, 207–211.PubMedGoogle Scholar
  74. 74.
    Whitfield, M. L., Sherlock, G., Saldanha, A. J., Murray, J. I., Ball, C. A., Alexander, K. E., Matese, J. C., Perou, C. M., Hurt, M. M., Brown, P. O., and Botstein, D. (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell. 13, 1977–2000.PubMedGoogle Scholar
  75. 75.
    Tobey, R. A., and Crissman, H. A. (1972) Preparation of large quantities of synchronized mammalian cells in late G1 in the pre-DNA replicative phase of the cell cycle. Exp. Cell Res. 75, 460–464.PubMedGoogle Scholar
  76. 76.
    Skoog, L., and Nordenskjold, B. (1971) Effect of hydroxyurea and 1-0-D-arabinofuranosyl-cytosine on deoxyribonucleotide pools in mouse embryo cells. Eur. J. Biochem. 19, 81–89.PubMedGoogle Scholar
  77. 77.
    Wang, T. F. (1991) Eukaryotic DNA polymerases. Annu. Rev. Biochem. 60, 513–552.PubMedGoogle Scholar
  78. 78.
    Brundret, K. M., Dalziel, W., Hesp, B., Jarvis, J. A. J., and Neidle, S. (1972) X-Ray crystallographic determination of the structure of the antibiotic aphidicolin: a tetracyclic diterpenoid containing a new ring system. J. Chem. Soc. Chem. Commun. 1027–1028.Google Scholar
  79. 79.
    Nagano, H., and Ikegami, S. (1980) Aphidicolin: a specific inhibitor of eukaryotic DNA polymerase alpha. Seikagaku 52, 1208–1216.PubMedGoogle Scholar
  80. 80.
    Sala, F., Parisi, B., Burroni, D., Amileni, A. R., Pedrali-Noy, G., and Spadari, S. (1980) Specific and reversible inhibition by aphidicolin in the alpha-like DNA polymerase of plant cells. FEBS Lett. 117, 93–98.PubMedGoogle Scholar
  81. 81.
    Sala, F., Galli, M. G., Levi, M., Burroni, D., Parisi, B., Pedrali-Noy, G., and Spadari, S. (1981) Functional roles of the plant alpha-like and gamma-like DNA polymerases. FEBS Lett. 124, 112–118.PubMedGoogle Scholar
  82. 82.
    Levenson, V., and Hamlin, J. (1993) A general protocol for evaluation the specific effects of DNA replication inhibitors. Nucleic Acids Res. 21, 3997–4004.PubMedGoogle Scholar
  83. 83.
    Kues, W. A., Anger, M., Carnwarth, J. W., Motlik, J., and Nieman, H. (2000) Cell cycle synchronization of porcine fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol. Reprod. 62, 412–419.PubMedGoogle Scholar
  84. 84.
    Pedrali-Noy, G., Spadari, S., Miller-Faurès, A., Miller, A. O., Kruppa, J., and Koch, G. (1980) Synchronization of HeLa cell cultures by inhibition of DNA polymerase alpha with aphidicolin. Nucleic Acids Res. 8, 377–387.PubMedGoogle Scholar
  85. 85.
    Lawrence, J. L., Schrick, F. N., Hopkins, F. M., Welborn, M. G., McCracken, M. D., Sonstegard, T., Wilson, T. J., and Edwards, J. L. (2005) Fetal losses and pathologic findings of clones derived from serum-starved versus serum-fed bovine ovarian granulosa cells. Reprod. Biol. 5, 171–184.PubMedGoogle Scholar
  86. 86.
    Scher, C. D., Stone, M. E., and Stiles, C. D. (1979) Platelet-derived growth factor prevents Go growth arrest. Nature 281, 390–392.PubMedGoogle Scholar
  87. 87.
    Endo, A., Kuroda, M., and Tansawa, K. (2004) Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B. fungal metabolites having hypocholesterolemic activity. Atheroscler. Suppl. 5, 39–42.PubMedGoogle Scholar
  88. 88.
    Langan, T. J., and Slater, M. C. (2005) Isoprenoids and astroglial cell cycling: diminished mevalonate availability and inhibition of dolichol-linked glycoprotein synthesis arrest cycling through distinct mechanisms. J. Cell Physiol. 149, 284–292.Google Scholar
  89. 89.
    Larson, R. A., Chung, J., Scanu, A. M., and Vachnin, S. (1982) Neutrophils are required for the DNA synthetic response of human lymphocytes to mevalonic acid: evidence suggesting that a nonsterol product of mevalonate is involved. Proc. Natl. Acad. Sci. USA 79, 3028–3032.PubMedGoogle Scholar
  90. 90.
    Habenicht, A. J., Glomset, J. A., and Ross, R. (1980) Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J. Biol. Chem. 255, 5134–5140.PubMedGoogle Scholar
  91. 91.
    Maltese, W. A., and Sheridan, K. M. (1987) Isoprenylated proteins in cultured cells: subcellular distribution and changes related to altered morphology and growth arrest induced by mevalonate deprivation. J. Cell. Physiol. 133, 471–481.PubMedGoogle Scholar
  92. 92.
    Langan, T. J., and Volpe, J. J. (1987) Cell cycle-specific requirement for mevalonate, but not for cholesterol, for DNA synthesis in glial primary cultures. J. Neurochem. 49, 513–521.PubMedGoogle Scholar
  93. 93.
    Doyle, J. W., and Kandutsch, A. A. (1988) Requirement for mevalonate in cycling cells: quantitative and temporal aspects. J. Cell. Physiol. 137, 133–140.PubMedGoogle Scholar
  94. 94.
    Sinensky, M., and Logel, J. (1985) Defective macromolecule biosynthesis and cellcycle progression in a mammalian cell starved for mevalonate. Proc. Natl. Acad. Sci. USA 82, 3257–3261.PubMedGoogle Scholar
  95. 95.
    Keyomarsi, K., Sandoval, L., Band, V., and Pardee, A. B. (1991) Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res. 51, 3602–3609.PubMedGoogle Scholar
  96. 96.
    Jakóbisiak, M., Bruno, S., Skierski, J., and Darzynkiewicz, Z. (1991) The cell cycle specific effects of lovastatin. Proc. Natl. Acad. Sci. USA 88, 3628–3632.PubMedGoogle Scholar
  97. 97.
    Crissman, H. A., Gadbois, D. M., Tobey, R. A., and Bradbury, E. M. (1991) Transformed mammalian cells are deficient in kinase-mediated progression through the G1 phase of the cell cycle. Proc. Natl. Acad. Sci. USA 88, 7580–7585.PubMedGoogle Scholar
  98. 98.
    Bruno, S., Ardelt, B., Skierski, J. S., Traganos, F., and Darzynkiewicz, Z. (1992) Different effects of staurosporine, an inhibitor of protein kinases, on the cell cycle and chromatin structure of normal and leukemic lymphocytes. Cancer Res. 52, 470–476.PubMedGoogle Scholar
  99. 99.
    Bruno, S., Traganos, F., and Darzynkiewicz, Z. (1996) Cell cycle synchronizing properties of staurosporine. Methods Cell Sci. 18, 99–107.Google Scholar
  100. 100.
    Nagel, W. W., and Vallee, B. L. (1995) Cell cycle regulation of metallothionein in human colonic cancer cells. Proc. Natl. Acad. Sci. USA 92, 579–583.PubMedGoogle Scholar
  101. 101.
    Gibbons, J., Arat, S., Rzucidlo, J., Miyoshi, K., Waltenburg, R. D., Respess, D. S., Tumlin, M., and Stice, S. L. (2002) Enhanced survivability of cloned calves derived from roscovitine-treated adult somatic cells. Biol. Reprod. 66, 895–900.PubMedGoogle Scholar
  102. 102.
    Doida, Y., and Okada, S. (1967) Synchronization of L5178Y cells by successive treatment with excess thymidine and colcemid. Exp. Cell Res. 48, 540–548.Google Scholar
  103. 103.
    Rottmann, O. J., and Arnold, S. (1983) Enhancing the mitotic index of blastomeres by thymidine synchronization. Anim. Reprod. Sci. 6, 239–242.Google Scholar
  104. 104.
    Kim, J. H., and Eidinoff, M. L. (1965) Action of 1-(3-D-arabinofuranosylcytosine on the nucleic acid metabolism and viability of HeLa cells. Cancer Res. 25, 698–702.PubMedGoogle Scholar
  105. 105.
    Lenaz, L., Sternberg, S. S., and Philips, F. S. (1969) Cytotoxic effects of 1-beta-D-arabinofuranosyl-5-fluorocytosine and of 1-beta-D-arabinofuranosylcytosine in proliferating tissues in mice. Cancer Res. 29, 1790–1798.PubMedGoogle Scholar
  106. 106.
    Bertalanffy, F. D., and Gibson, M. H. L. (1971) The in vivo effects of arabinosylcytosine on the proliferation of murine B16 melanoma and Ehrlich ascites tumor. Cancer Res. 31, 66–71.Google Scholar
  107. 107.
    Verbin, R. S., Diluiso, G., Liang, H., and Farber, E. (1972) Synchronization of cell division in vivo through the combined use of cytosine arabinoside and colcemid. Cancer Res. 32, 1489–1495.PubMedGoogle Scholar
  108. 108.
    Erba, E., Sen, S., Lorico, A., and D’Incalci, M. (1992) Potentiation of etoposide cytotoxicity against a human ovarian cancer cell line by pretreatment with non-toxic concentrations of methotrexate or aphidicolin. Eur. J. Cancer. 28, 66–71.PubMedGoogle Scholar
  109. 109.
    Erba, E., and Sen, S. (1996) Synchronization of cancer cell lines with methotrexate in vitro. Methods Cell Sci. 18, 149–163.Google Scholar
  110. 110.
    Zhang, E., Li, X., Zhang, S., Chen, L., and Zheng, X. (2005) Cell cycle synchronization of embryonic stem cells: effect of serum deprivation on the differentiation of embryonic bodies in vitro. Biochem. Biophys. Res. Commun. 333, 1171–1177.PubMedGoogle Scholar
  111. 111.
    Memili, E., Behboodi, E., Overton, S. A., Kenney, A. M., O’Coin, M., Zahedi, A., Rowitch, D. H., and Echelard, Y. (2004) Synchronization of goat fibroblast cells at quiescent stage and determination of their transition from G0 to G1 by detection of cyclin D1 mRNA. Cloning Stem Cells. 6, 58–66.PubMedGoogle Scholar
  112. 112.
    Enninga, I. C., Groenendijk, R. T., van Zeeland, A. A., and Simons, J. W. (1984) Use of low temperature for growth arrest and synchronization of human diploid fibroblasts. Mutat. Res. 130, 343–352.PubMedGoogle Scholar
  113. 113.
    Rojas, M. O., and Wasserman, M. (2007) Effect of Low temperature on the in vitro growth of Plasmodium falciparum. J. Eukaryot. Microbiol. 40, 149–152.Google Scholar
  114. 114.
    Fox, M. H., Read, R. A., and Bedford, J. S. (1987) Comparison of synchronized Chinese hamster ovary cells obtained by mitotic shake-off, hydroxyurea, aphidicolin, or methotrexate. Cytometry 8, 315–320.PubMedGoogle Scholar
  115. 115.
    Miller, E. M., and Kinsella, T. J. (1992) Radiosensitization by fluorodeoxyuridine: effects of thymidylate synthase inhibition and cell synchronization. Cancer Res. 52, 1687–1694.PubMedGoogle Scholar
  116. 116.
    Vogel, W., Schempp, W., and Sigwarth, I. (1978) Comparison of thymidine, fluorodeoxyuridine, hydroxyurea, and methotrexate blocking at the G1/S phase transition of the cell cycle, studied by replication patterns. Hum. Genet. 45, 193–198.PubMedGoogle Scholar
  117. 117.
    Carl, P. L. (1970) Escherichia coli mutants with temperature-sensitive synthesis of DNA. Mol. Gen. Genet. 109, 107–122.PubMedGoogle Scholar
  118. 118.
    Wickner, S., and Hurwitz, J. (1975) Interaction of Escherichia coli dnaB and dnaC(D) gene products in vitro. Proc. Natl. Acad. Sci. USA 72, 921–925.PubMedGoogle Scholar
  119. 119.
    Withers, H. L., and Bernander, R. (1998) Characterization of dnaC2 and dnaC28 mutants by flow cytometry. J. Bacteriol. 180, 1624–1631.PubMedGoogle Scholar
  120. 120.
    Helmstetter, C. E., and Cummings, D. J. (1963) Bacterial synchronization by selection of cells at division. Proc. Natl. Acad. Sci. USA 50, 767–774.PubMedGoogle Scholar
  121. 121.
    Helmstetter, C. E., Eenhuis, C., Theisen, P., Grimwade, J., and Leonard, A. C. (1992) Improved bacterial baby machine: application to Escherichia coli K-12. J. Bacteriol. 174, 3445–3449.PubMedGoogle Scholar
  122. 122.
    Ferullo, D. J., Cooper, D. L., Moore, H. R., and Lovett, S. T. (2009) Cell cycle synchronization of Escherichia coli using the stringent response, with fluorescence labeling assays for DNA content and replication. Methods 48, 8–13.PubMedGoogle Scholar
  123. 123.
    Walker, G. M. (1999) Synchronization of yeast cell populations. Methods Cell Sci. 21, 87–93.PubMedGoogle Scholar
  124. 124.
    Golzio, M., Teissié, J., and Rols, M.-P. (2002) Cell synchronization effect on mammalian cell permeabilization and gene delivery by electric field. Biochim. Biophys. Acta 1563, 23–28.PubMedGoogle Scholar
  125. 125.
    Grosjean, F., Batard, P., Jordan, M., and Wurm, F. M. (2002) S phase synchronized CHO cells show elevated transfection efficiency and expression using CaPi. Cytotechnology 38, 57–62.PubMedGoogle Scholar
  126. 126.
    Hoffman, E. A., Poncius, A., McKay, B. S., and Stamer, W. D. (2004) Cell cycle synchronization and transfection efficiency of human trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 45, 4432.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Microbial Biotechnology and Cell BiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations