Genome-Wide Transcriptome Analysis in Yeast Using High-Density Tiling Arrays

  • Lior David
  • Sandra Clauder-Münster
  • Lars M. Steinmetz
Part of the Methods in Molecular Biology book series (MIMB, volume 759)


In the last decade, it became clear that transcription goes far beyond that of protein-coding genes. Most RNA molecules are transcribed from intergenic regions or introns and exhibit much variability in size, expression level, secondary structure, and evolutionary conservation. While for several types of non-coding RNAs some cellular functions have been reported, like for micro-RNAs and small nucleolar RNAs, for most others no indications of function or regulation have so far been found. Therefore, the RNA population inside a cell is diverse and cryptic and, thus, demands powerful methods to study its composition, abundance, and structure. DNA oligonucleotide microarrays have proven to be of great utility to study transcription of genes in various organisms. Recently, due to advancement in microarray technology, tiling microarrays that extend transcription measurement to genomic regions beyond protein-coding genes were designed for several species. The Saccharomyces cerevisiae yeast tiling array contains overlapping probes across the full genomic sequence, with consecutive probes starting every 8 bp on average on each strand, enabling strand-specific measurement of transcription from a full eukaryotic genome. Here, we describe the methods used to extract yeast RNA, convert it into first-strand cDNA, fragment, and label it for hybridization to the tiling array. This protocol will enable researchers not only to study which genes are expressed and to what levels, but also to identify non-coding RNAs and to study the structure of transcripts including their untranslated regions, alternative start, stop, and processing sites. This information will allow understanding their roles inside cells.

Key words

Tiling microarray transcription gene expression gene structure non-coding RNA whole-genome microarray strand-specific transcription cDNA yeast 


  1. 1.
    Amaral, P. P., Dinger, M. E., Mercer, T. R., and Mattick, J. S. (2008) The eukaryotic genome as an RNA machine. Science 319, 1787–1789.PubMedCrossRefGoogle Scholar
  2. 2.
    Kapranov, P., Cawley, S. E., Drenkow, J., et al. (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919.PubMedCrossRefGoogle Scholar
  3. 3.
    Carninci, P., Kasukawa, T., Katayama, S., et al. (2005) The transcriptional landscape of the mammalian genome. Science 309, 1559–1563.PubMedCrossRefGoogle Scholar
  4. 4.
    Birney, E., Stamatoyannopoulos, J. A., Dutta, A., et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.PubMedCrossRefGoogle Scholar
  5. 5.
    Wodicka, L., Dong, H., Mittmann, M., Ho, M. H., and Lockhart, D. J. (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 1359–1367.PubMedCrossRefGoogle Scholar
  6. 6.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.PubMedCrossRefGoogle Scholar
  7. 7.
    Lockhart, D. J., Dong, H., Byrne, M. C., et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680.PubMedCrossRefGoogle Scholar
  8. 8.
    Lashkari, D. A., DeRisi, J. L., McCusker, J. H., et al. (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA 94, 13057–13062.PubMedCrossRefGoogle Scholar
  9. 9.
    Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamada, K., Lim, J., Dale, J. M., et al. (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302, 842–846.PubMedCrossRefGoogle Scholar
  11. 11.
    Tjaden, B., Saxena, R. M., Stolyar, S., Haynor, D. R., Kolker, E., and Rosenow, C. (2002) Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res. 30, 3732–3738.PubMedCrossRefGoogle Scholar
  12. 12.
    Selinger, D. W., Cheung, K. J., Mei, R., et al. (2000) RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat. Biotechnol. 18, 1262–1268.PubMedCrossRefGoogle Scholar
  13. 13.
    David, L., Huber, W., Granovskaia, M., et al. (2006) A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA 103, 5320–5325.PubMedCrossRefGoogle Scholar
  14. 14.
    Perocchi, F., Xu, Z., Clauder-Munster, S., and Steinmetz, L. M. (2007) Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res. 35, e128.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  • Lior David
    • 1
  • Sandra Clauder-Münster
    • 2
  • Lars M. Steinmetz
    • 2
  1. 1.Department of Animal Sciences, R.H. Smith Faculty of Agriculture, Food, and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
  2. 2.Genome Biology UnitEMBLHeidelbergGermany

Personalised recommendations