Yeast Systems Biology pp 483-497

Part of the Methods in Molecular Biology book series (MIMB, volume 759)

Use of Genome-Scale Metabolic Models in Evolutionary Systems Biology

  • Balázs Papp
  • Balázs Szappanos
  • Richard A. Notebaart
Protocol

Abstract

One of the major aims of the nascent field of evolutionary systems biology is to test evolutionary hypotheses that are not only realistic from a population genetic point of view but also detailed in terms of molecular biology mechanisms. By providing a mapping between genotype and phenotype for hundreds of genes, genome-scale systems biology models of metabolic networks have already provided valuable insights into the evolution of metabolic gene contents and phenotypes of yeast and other microbial species. Here we review the recent use of these computational models to predict the fitness effect of mutations, genetic interactions, evolutionary outcomes, and to decipher the mechanisms of mutational robustness. While these studies have demonstrated that even simplified models of biochemical reaction networks can be highly informative for evolutionary analyses, they have also revealed the weakness of this modeling framework to quantitatively predict mutational effects, a challenge that needs to be addressed for future progress in evolutionary systems biology.

Key words

Flux balance analysis (FBA) constraint-based modeling gene essentiality genetic interaction genome evolution fitness landscape metabolic network Saccharomyces cerevisiae 

References

  1. 1.
    Loewe, L. (2009) A framework for evolutionary systems biology. BMC Syst. Biol. 3, 27.PubMedCrossRefGoogle Scholar
  2. 2.
    Endy, D., You, L., Yin, J., and Molineux, I. J. (2000) Computation, prediction, and experimental tests of fitness for bacteriophage T7 mutants with permuted genomes. Proc. Natl. Acad. Sci. USA 97, 5375–5380.PubMedCrossRefGoogle Scholar
  3. 3.
    Papp, B., Pál, C., and Hurst, L. D. (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664.PubMedCrossRefGoogle Scholar
  4. 4.
    Notebaart, R. A., Kensche, P. R., Huynen, M. A., and Dutilh, B. E. (2009) Asymmetric relationships between proteins shape genome evolution. Genome Biol. 10, R19.PubMedCrossRefGoogle Scholar
  5. 5.
    Pál, C., Papp, B., Lercher, M. J., Csermely, P., Oliver, S. G., and Hurst, L. D. (2006) Chance and necessity in the evolution of minimal metabolic networks. Nature 440, 667–670.PubMedCrossRefGoogle Scholar
  6. 6.
    Loewe, L., and Hillston, J. (2008) The distribution of mutational effects on fitness in a simple circadian clock. Lect. Notes Bioinf. 5307, 156–175.Google Scholar
  7. 7.
    Teusink, B., Walsh, M. C., van Dam, K., and Westerhoff, H. V. (1998) The danger of metabolic pathways with turbo design. Trends Biochem. Sci. 23, 162–169.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., and Tyson, J. J. (2004) Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862.PubMedCrossRefGoogle Scholar
  9. 9.
    Christensen, T. S., Oliveira, A. P., and Nielsen, J. (2009) Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Syst. Biol. 3, 7.PubMedCrossRefGoogle Scholar
  10. 10.
    Price, N. D., Reed, J. L., and Palsson, B. O. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897.PubMedCrossRefGoogle Scholar
  11. 11.
    Kauffman, K. J., Prakash, P., and Edwards, J. S. (2003) Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496.PubMedCrossRefGoogle Scholar
  12. 12.
    Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M., and Tans, S. J. (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386.PubMedCrossRefGoogle Scholar
  13. 13.
    Borenstein, E., Kupiec, M., Feldman, M. W., and Ruppin, E. (2008) Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl. Acad. Sci. USA 105, 14482–14487.PubMedCrossRefGoogle Scholar
  14. 14.
    Freilich, S., Kreimer, A., Borenstein, E., et al. (2009) Metabolic-network-driven analysis of bacterial ecological strategies. Genome Biol. 10, R61.PubMedCrossRefGoogle Scholar
  15. 15.
    Harrison, R., Papp, B., Pal, C., Oliver, S. G., and Delneri, D. (2007) Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl. Acad. Sci. USA 104, 2307–2312.PubMedCrossRefGoogle Scholar
  16. 16.
    Raman, K., Rajagopalan, P., and Chandra, N. (2005) Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLoS Comput. Biol. 1, e46.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee, D. S., Burd, H., Liu, J., et al. (2009) Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets. J. Bacteriol. 191, 4015–4024.PubMedCrossRefGoogle Scholar
  18. 18.
    Forster, J., Famili, I., Fu, P., Palsson, B. O., and Nielsen, J. (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253.PubMedCrossRefGoogle Scholar
  19. 19.
    Forster, J., Famili, I., Palsson, B. O., and Nielsen, J. (2003) Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. Omics 7, 193–202.PubMedCrossRefGoogle Scholar
  20. 20.
    Duarte, N. C., Herrgard, M. J., and Palsson, B. O. (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuepfer, L., Sauer, U., and Blank, L. M. (2005) Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430.PubMedCrossRefGoogle Scholar
  22. 22.
    Snitkin, E. S., Dudley, A. M., Janse, D. M., Wong, K., Church, G. M., and Segre, D. (2008) Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol. 9, R140.PubMedCrossRefGoogle Scholar
  23. 23.
    Becker, S. A., and Palsson, B. O. (2008) Three factors underlying incorrect in silico predictions of essential metabolic genes. BMC Syst. Biol. 2, 14.PubMedCrossRefGoogle Scholar
  24. 24.
    Segrè, D., Vitkup, D., and Church, G. M. (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117.PubMedCrossRefGoogle Scholar
  25. 25.
    Shlomi, T., Berkman, O., and Ruppin, E. (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. USA 102, 7695–7700.PubMedCrossRefGoogle Scholar
  26. 26.
    Snitkin, E. S., and Segre, D. (2008) Optimality criteria for the prediction of metabolic fluxes in yeast mutants. Genome Inform. 20, 123–134.PubMedCrossRefGoogle Scholar
  27. 27.
    Deutschbauer, A. M., Jaramillo, D. F., Proctor, M., et al. (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925PubMedCrossRefGoogle Scholar
  28. 28.
    Warringer, J., Ericson, E., Fernandez, L., Nerman, O., and Blomberg, A. (2003) High-resolution yeast phenomics resolves different physiological features in the saline response. Proc. Natl. Acad. Sci. USA 100, 15724–15729.PubMedCrossRefGoogle Scholar
  29. 29.
    Schuster, S., Pfeiffer, T., and Fell, D. A. (2008) Is maximization of molar yield in metabolic networks favoured by evolution? J. Theor. Biol. 252, 497–504.PubMedCrossRefGoogle Scholar
  30. 30.
    Gancedo, J. M. (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62, 334–361.PubMedGoogle Scholar
  31. 31.
    Sonnleitner, B., and Kappeli, O. (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol. Bioeng. 28, 927–937.PubMedCrossRefGoogle Scholar
  32. 32.
    Schuurmans, J. M., Boorsma, A., Lascaris, R., Hellingwerf, K. J., and Teixeira de Mattos, M. J. (2008) Physiological and transcriptional characterization of Saccharomyces cerevisiae strains with modified expression of catabolic regulators. FEMS Yeast Res. 8, 26–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Usaite, R., Jewett, M. C., Oliveira, A. P., Yates, J. R., 3rd, Olsson, L., and Nielsen, J. (2009) Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol. Syst. Biol. 5, 319.PubMedCrossRefGoogle Scholar
  34. 34.
    Boone, C., Bussey, H., and Andrews, B. J. (2007) Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8, 437–449.PubMedCrossRefGoogle Scholar
  35. 35.
    Wolf, J. B., Brodie, E. D., and Wade, M. J. (2000) Epistasis and the Evolutionary Process. New York, NY: Oxford University Press.Google Scholar
  36. 36.
    Segrè, D., Deluna, A., Church, G. M., and Kishony, R. (2005) Modular epistasis in yeast metabolism. Nat. Genet. 37, 77–83.PubMedGoogle Scholar
  37. 37.
    Deutscher, D., Meilijson, I., Kupiec, M., and Ruppin, E. (2006) Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat. Genet. 38, 993–998.PubMedCrossRefGoogle Scholar
  38. 38.
    Tong, A. H., Lesage, G., Bader, G. D., et al. (2004) Global mapping of the yeast genetic interaction network. Science 303, 808–813.PubMedCrossRefGoogle Scholar
  39. 39.
    Schuldiner, M., Collins, S. R., Thompson, N. J., et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519.PubMedCrossRefGoogle Scholar
  40. 40.
    Giaever, G., Chu, A. M., Ni, L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.PubMedCrossRefGoogle Scholar
  41. 41.
    Hurst, L. D., and Pál, C. (2007) Genomic redundancy and dispensability. In: Pagel, M., and Pomiankowski, A. (eds.), Evolutionary Genomics and Proteomics (pp. 141–160). Sunderland, MA: Sinauer Associates Inc.Google Scholar
  42. 42.
    Wagner, A. (2000) Robustness against mutations in genetic networks of yeast. Nat. Genet. 24, 355–361.PubMedCrossRefGoogle Scholar
  43. 43.
    Blank, L. M., Kuepfer, L., and Sauer, U. (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol. 6, R49.PubMedCrossRefGoogle Scholar
  44. 44.
    Nishikawa, T., Gulbahce, N., and Motter, A. E. (2008) Spontaneous reaction silencing in metabolic optimization. PLoS Comput. Biol. 4, e1000236.PubMedCrossRefGoogle Scholar
  45. 45.
    Hillenmeyer, M. E., Fung, E., Wildenhain, J., et al. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365.PubMedCrossRefGoogle Scholar
  46. 46.
    Ihmels, J., Collins, S. R., Schuldiner, M., Krogan, N. J., and Weissman, J. S. (2007) Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Mol. Syst. Biol. 3, 86.PubMedCrossRefGoogle Scholar
  47. 47.
    Musso, G., Costanzo, M., Huangfu, M., et al. (2008) The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome Res. 18, 1092–1099.PubMedCrossRefGoogle Scholar
  48. 48.
    Papp, B., Teusink, B., and Notebaart, R. A. (2009) A critical view of metabolic network adaptations. HFSP J. 3, 24–35.PubMedCrossRefGoogle Scholar
  49. 49.
    Travisano, M., Mongold, J. A., Bennett, A. F., and Lenski, R. E. (1995) Experimental tests of the roles of adaptation, chance, and history in evolution. Science 267, 87–90.PubMedCrossRefGoogle Scholar
  50. 50.
    Pál, C., Papp, B., and Lercher, M. J. (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375.PubMedCrossRefGoogle Scholar
  51. 51.
    Parker, G. A., and Smith, J. M. (1990) Optimality theory in evolutionary biology. Nature 348, 27–33.CrossRefGoogle Scholar
  52. 52.
    Schuetz, R., Kuepfer, L., and Sauer, U. (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119.PubMedCrossRefGoogle Scholar
  53. 53.
    Pfeiffer, T., and Schuster, S. (2005) Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem. Sci. 30, 20–25.PubMedCrossRefGoogle Scholar
  54. 54.
    MacLean, R. C. (2008) The tragedy of the commons in microbial populations: insights from theoretical, comparative and experimental studies. Heredity 100, 471–477.PubMedCrossRefGoogle Scholar
  55. 55.
    Ibarra, R. U., Edwards, J. S., and Palsson, B. O. (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189.PubMedCrossRefGoogle Scholar
  56. 56.
    Herring, C. D., Raghunathan, A., Honisch, C., et al. (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat. Genet. 38, 1406–1412.PubMedCrossRefGoogle Scholar
  57. 57.
    Teusink, B., Wiersma, A., Jacobs, L., Notebaart, R. A., and Smid, E. J. (2009) Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation. PLoS Comput. Biol. 5, e1000410.PubMedCrossRefGoogle Scholar
  58. 58.
    Fong, S. S., and Palsson, B. O. (2004) Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat. Genet. 36, 1056–1058.PubMedCrossRefGoogle Scholar
  59. 59.
    Beard, D. A., Liang, S. D., and Qian, H. (2002) Energy balance for analysis of complex metabolic networks. Biophys. J. 83, 79–86.PubMedCrossRefGoogle Scholar
  60. 60.
    Covert, M. W., Schilling, C. H., and Palsson, B. (2001) Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88.PubMedCrossRefGoogle Scholar
  61. 61.
    Sauer, U. (2006) Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62.PubMedCrossRefGoogle Scholar
  62. 62.
    Ishii, N., Nakahigashi, K., Baba, T., et al. (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597.PubMedCrossRefGoogle Scholar
  63. 63.
    Akesson, M., Forster, J., and Nielsen, J. (2004) Integration of gene expression data into genome-scale metabolic models. Metab. Eng. 6, 285–293.PubMedCrossRefGoogle Scholar
  64. 64.
    Hoppe, A., Hoffmann, S., and Holzhutter, H. G. (2007) Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst. Biol. 1, 23.PubMedCrossRefGoogle Scholar
  65. 65.
    Allen, J., Davey, H. M., Broadhurst, D., et al. (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat. Biotechnol. 21, 692–696.PubMedCrossRefGoogle Scholar
  66. 66.
    Hughes, T. R., Marton, M. J., Jones, A. R., et al. (2000) Functional discovery via a compendium of expression profiles. Cell 102, 109–126.PubMedCrossRefGoogle Scholar
  67. 67.
    Smallbone, K., Simeonidis, E., Broomhead, D. S., and Kell, D. B. (2007) Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS J 274, 5576–5585.PubMedCrossRefGoogle Scholar
  68. 68.
    Covert, M. W., Xiao, N., Chen, T. J., and Karr, J. R. (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24, 2044–2050.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  • Balázs Papp
    • 1
    • 2
  • Balázs Szappanos
    • 3
  • Richard A. Notebaart
    • 4
    • 5
  1. 1.Institute of BiochemistryBiological Research Center of the Hungarian Academy of SciencesSzegedHungary
  2. 2.Department of Genetics, Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
  3. 3.Institute of BiochemistryBiological Research CenterSzegedHungary
  4. 4.Centre for Molecular and Biomolecular Informatics (NCMLS)Radboud University Nijmegen Medical CentreNijmegenThe Netherlands
  5. 5.Centre for Systems Biology and BioenergeticsRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations