Advertisement

Genome-Scale Integrative Data Analysis and Modeling of Dynamic Processes in Yeast

  • Jean-Marc Schwartz
  • Claire Gaugain
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 759)

Abstract

Building a dynamic model of a complete biological cell is one of the great challenges of the 21st century. While this objective could appear unrealistic until recently, considerable improvements in high-throughput data collection techniques, computational performance, data integration, and modeling approaches now allow us to consider it within reach in the near future. In this chapter, we review recent developments that pave the way toward the construction of genome-scale dynamic models. We first describe methodologies for the integration of heterogeneous “omics” datasets, which enable the interpretation of cellular activity at the genome scale and in fluctuating conditions, providing the necessary input to models. We subsequently discuss principles of such models and describe a series of approaches that open perspectives toward the construction of genome-scale dynamic models.

Key words

Systems biology data integration dynamic model modeling 

References

  1. 1.
    Papin, J., Reed, J., and Palsson, B. Ø. (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem. Sci. 29, 641–647.PubMedCrossRefGoogle Scholar
  2. 2.
    Ghazalpour, A., Doss, S., Sheth, S. S., et al. (2005) Genomic analysis of metabolic pathway gene expression in mice. Genome Biol. 6, R59.PubMedCrossRefGoogle Scholar
  3. 3.
    Goffard, N., and Weiller, G. (2007) PathExpress: a web-based tool to identify relevant pathways in gene expression data. Nucleic Acids Res. 35, W176–181.PubMedCrossRefGoogle Scholar
  4. 4.
    Yang, H. H., Hu, Y., Buetow, K. H., and Lee, M. P. (2004) A computational approach to measuring coherence of gene expression in pathways. Genomics 84, 211–217.PubMedCrossRefGoogle Scholar
  5. 5.
    Ekins, S., Nikolsky, Y., Bugrim, A., Kirillov, E., and Nikolskaya, T. (2007) Pathway mapping tools for analysis of high content data. Methods Mol. Biol. 356, 319–350.PubMedGoogle Scholar
  6. 6.
    Kanehisa, M., and Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Draghici, S., Khatri, P., Tarca, A. L., et al. (2007) A systems biology approach for pathway level analysis. Genome Res. 17, 1537–1545.PubMedCrossRefGoogle Scholar
  8. 8.
    Antonov, A., Dietmann, S., and Mewes, H. (2008) KEGG Spider: interpretation of genomics data in the context of the global gene metabolic network. Genome Biol. 9, R179.PubMedCrossRefGoogle Scholar
  9. 9.
    Nacher, J. C., Schwartz, J. M., Kanehisa, M., and Akutsu, T. (2006) Identification of metabolic units induced by environmental signals. Bioinformatics 14, e375–383.CrossRefGoogle Scholar
  10. 10.
    Goffard, N., Frickey, T., and Weiller, G. (2009) PathExpress update: the enzyme neighbourhood method of associating gene-expression data with metabolic pathways. Nucleic Acids Res. 37, 335–339.CrossRefGoogle Scholar
  11. 11.
    Schwartz, J. M., Gaugain, C., Nacher, J. C., de Daruvar, A., and Kanehisa, M. (2007) Observing metabolic functions at the genome scale. Genome Biol. 8, R123.PubMedCrossRefGoogle Scholar
  12. 12.
    Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A., and Palsson, B. Ø. (2003) Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28, 250–258.PubMedCrossRefGoogle Scholar
  13. 13.
    Schilling, C. H., Letscher, D., and Palsson, B. Ø. (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248.PubMedCrossRefGoogle Scholar
  14. 14.
    Schuster, S., Fell, D. A., and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332.PubMedCrossRefGoogle Scholar
  15. 15.
    Barriot, R., Poix, J., Groppi, A., et al. (2004) New strategy for the representation and the integration of biomolecular knowledge at a cellular scale. Nucleic Acids Res. 32, 3581–3589.PubMedCrossRefGoogle Scholar
  16. 16.
    Vido, K., Spector, D., Lagniel, G., et al. (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276, 8469–8474.PubMedCrossRefGoogle Scholar
  17. 17.
    Castrillo, J. I., Zeef, L. A., Hoyle, D. C., et al. (2007) Growth control of the eukaryote cell: a systems biology study in yeast. J. Biol. 6, 4.PubMedCrossRefGoogle Scholar
  18. 18.
    Ishii, N., Nakahigashi, K., Baba, T., et al. (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597.PubMedCrossRefGoogle Scholar
  19. 19.
    Beyer, A., Hollunder, J., Nasheuer, H. P., and Wilhelm, T. (2004) Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol. Cell. Proteomics 3, 1083–1092.PubMedCrossRefGoogle Scholar
  20. 20.
    Bradley, P. H., Brauer, M. J., Rabinowitz, J. D., and Troyanskaya, O. G. (2009) Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae. PLoS Comput. Biol. 5, e1000270.PubMedCrossRefGoogle Scholar
  21. 21.
    Yeang, C. H., and Vingron, M. (2006) A joint model of regulatory and metabolic networks. BMC Bioinformatics 7, 332.PubMedCrossRefGoogle Scholar
  22. 22.
    Sontag, E., Kiyatkin, A., and Kholodenko, B. N. (2004) Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 20, 1877–1886.PubMedCrossRefGoogle Scholar
  23. 23.
    Grimbs, S., Selbig, J., Bulik, S., Holzhütter, H. G., and Steuer, R. (2007) The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks. Mol. Syst. Biol. 3, 146.PubMedCrossRefGoogle Scholar
  24. 24.
    Conradi, C., Flockerzi, D., Raisch, J., and Stelling, J. (2007) Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. Proc. Natl. Acad. Sci. USA 104, 19175–19180.PubMedCrossRefGoogle Scholar
  25. 25.
    Whelan, K. E., and King, R. D. (2008) Using a logical model to predict the growth of yeast. BMC Bioinformatics 9, 97.PubMedCrossRefGoogle Scholar
  26. 26.
    Förster, J., Famili, I., Fu, P., Palsson, B. Ø., and Nielsen, J. (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253.PubMedCrossRefGoogle Scholar
  27. 27.
    Klamt, S., Saez-Rodriguez, J., Lindquist, J. A., Simeoni, L., and Gilles, E. D. (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7, 56.PubMedCrossRefGoogle Scholar
  28. 28.
    Gianchandani, E. P., Papin, J. A., Price, N. D., Joyce, A. R., and Palsson, B. Ø. (2006) Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput. Biol. 2, e101.PubMedCrossRefGoogle Scholar
  29. 29.
    Saez-Rodriguez, J., Simeoni, L., Lindquist, J. A., et al. (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3, e163.PubMedCrossRefGoogle Scholar
  30. 30.
    Gianchandani, E. P., Joyce, A. R., Palsson, B. Ø., and Papin, J. A. (2009) Functional states of the genome-scale Escherichia coli transcriptional regulatory system. PLoS Comput. Biol. 5, e1000403.PubMedCrossRefGoogle Scholar
  31. 31.
    Schwartz, J. M., and Kanehisa, M. (2006) Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis. BMC Bioinformatics 7, 186.PubMedCrossRefGoogle Scholar
  32. 32.
    Varma, A., and Palsson, B. Ø. (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12, 994–998.CrossRefGoogle Scholar
  33. 33.
    Lee, J. M., Gianchandani, E. P., Eddy, J. A., and Papin, J. A. (2008) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 4, e1000086.PubMedCrossRefGoogle Scholar
  34. 34.
    Steuer, R., Gross, T., Selbig, J., and Blasius, B. (2006) Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci. USA 103, 11868–11873.PubMedCrossRefGoogle Scholar
  35. 35.
    Smallbone, K., Simeonidis, E., Broomhead, D. S., and Kell, D. B. (2007) Something from nothing – bridging the gap between constraint-based and kinetic modelling. FEBS J. 274, 5576–5585.PubMedCrossRefGoogle Scholar
  36. 36.
    Teusink, B., Passarge, J., Reijenga, C. A., et al. (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267, 5313–5329.PubMedCrossRefGoogle Scholar
  37. 37.
    Ao, P., Lee, L., Lidstrom, M., Yin, L., and Zhu, X. (2008) Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens AM1 growth as validation. Chin. J. Biotechnol. 24, 980–994.CrossRefGoogle Scholar
  38. 38.
    Ederer, M., and Gilles, E. D. (2007) Thermodynamically feasible kinetic models of reaction networks. Biophys. J. 92, 1846–1857.PubMedCrossRefGoogle Scholar
  39. 39.
    Qian, H., and Beard, D. A. (2005) Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys. Chem. 114, 213–220.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoppe, A., Hoffmann, S., and Holzhütter, H. G. (2007) Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst. Biol. 1, 23.PubMedCrossRefGoogle Scholar
  41. 41.
    Henry, C. S., Broadbelt, L. J., and Hatzimanikatis, V. (2007) Thermodynamics-based metabolic flux analysis. Biophys. J. 92, 1792–1805.PubMedCrossRefGoogle Scholar
  42. 42.
    Jamshidi, N., and Palsson, B. Ø. (2008) Formulating genome-scale kinetic models in the post-genome era. Mol. Syst. Biol. 4, 171.PubMedCrossRefGoogle Scholar
  43. 43.
    Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., and Sethna, J. P. (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, 1871–1878.PubMedCrossRefGoogle Scholar
  44. 44.
    Daniels, B. C., Chen, Y. J., Sethna, J. P., Gutenkunst, R. N., and Myers, C. R. (2008) Sloppiness, robustness, and evolvability in systems biology. Curr. Opin. Biotechnol. 19, 389–395.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  1. 1.Faculty of Life SciencesUniversity of ManchesterManchesterUK
  2. 2.University of BordeauxBordeauxFrance
  3. 3.Université Paul Sabatier, CNRS, LMGMToulouseFrance

Personalised recommendations