Yeast Systems Biology pp 239-269

Part of the Methods in Molecular Biology book series (MIMB, volume 759)

The Automated Cell: Compound and Environment Screening System (ACCESS) for Chemogenomic Screening

  • Michael Proctor
  • Malene L. Urbanus
  • Eula L. Fung
  • Daniel F. Jaramillo
  • Ronald W. Davis
  • Corey Nislow
  • Guri Giaever
Protocol

Abstract

The automated cell, compound and environment screening system (ACCESS) was developed as an automated platform for chemogenomic research. In the yeast Saccharomyces cerevisiae, a number of genomic screens rely on the modulation of gene dose to determine the mode of action of bioactive compounds or the effects of environmental/compound perturbations. These and other phenotypic experiments have been shown to benefit from high-resolution growth curves and a highly automated controlled environment system that enables a wide range of multi-well assays that can be run over many days without any manual intervention. Furthermore, precise control of drug dosing, timing of drug exposure, and precise timing of cell harvesting at specific generation times are important for optimal results. Some of these benefits include the ability to derive fine distinctions between growth rates of mutant strains (1) and the discovery of novel compounds and drug targets (2). The automation has also enabled large-scale screening projects with over 100,000 unique compounds screened to date including a thousand genome-wide screens (3). The ACCESS system also has a diverse set of software tools to enable users to set up, run, annotate, and evaluate complex screens with minimal training.

Key words

Robotics phenotypic screening genome-wide screening yeast bacteria drug discovery 

References

  1. 1.
    Deutschbauer, A. M., Jaramillo, D. F., Proctor, M., et al. (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoon, S., Smith, A. M., Wallace, I. M., et al. (2008) An integrated platform of genomic assays reveals small-molecule bioactivities. Nat. Chem. Biol. 4, 498–506.PubMedCrossRefGoogle Scholar
  3. 3.
    Hillenmeyer, M. E., Fung, E., Wildenhain, J., et al. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365.PubMedCrossRefGoogle Scholar
  4. 4.
    Giaever, G., Shoemaker, D. D., Jones, T. W., et al. (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278–283.PubMedCrossRefGoogle Scholar
  5. 5.
    Winzeler, E. A., Shoemaker, D. D., Astromoff, A., et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.PubMedCrossRefGoogle Scholar
  6. 6.
    Giaever, G., Chu, A. M., Ni, L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.PubMedCrossRefGoogle Scholar
  7. 7.
    Pierce, S. E., Fung, E. L., Jaramillo, D. F., et al. (2006) A unique and universal molecular barcode array. Nat. Methods 3, 601–603.PubMedCrossRefGoogle Scholar
  8. 8.
    Pierce, S. E., Davis, R. W., Nislow, C., and Giaever, G. (2007) Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat. Protoc. 2, 2958–2974.PubMedCrossRefGoogle Scholar
  9. 9.
    Giaever, G., Flaherty, P., Kumm, J., et al. (2004) Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101, 793–798.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, W., St. Onge, R. P., Proctor, M., et al. (2005) Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet. 1, e24.PubMedCrossRefGoogle Scholar
  11. 11.
    St. Onge, R. P., Mani, R., Oh, J., et al. (2007) Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 39, 199–206.CrossRefGoogle Scholar
  12. 12.
    Ericson, E., Gebbia, M., Heisler, L. E., et al. (2008) Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast. PLoS Genet. 4, e1000151.PubMedCrossRefGoogle Scholar
  13. 13.
    Yan, Z., Costanzo, M., Heisler, L. E., et al. (2008) Yeast Barcoders: a chemogenomic application of a universal donor-strain collection carrying bar-code identifiers. Nat. Methods 5, 719–725.PubMedCrossRefGoogle Scholar
  14. 14.
    Spector, M. S., Raff, A., DeSilva, H., Lee, K., and Osley, M. A. (1997) Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol. Cell. Biol. 17, 545–552.PubMedGoogle Scholar
  15. 15.
    Sutton, A., Bucaria, J., Osley, M. A., and Sternglanz, R. (2001) Yeast ASF1 protein is required for cell cycle regulation of histone gene transcription. Genetics 158, 587–596.PubMedGoogle Scholar
  16. 16.
    Simon, I., Barnett, J., Hannett, N., et al. (2001) Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708.PubMedCrossRefGoogle Scholar
  17. 17.
    Gasch, A. P., Spellman, P. T., Kao, C. M., et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257.PubMedGoogle Scholar
  18. 18.
    Sheff, M. A., and Thorn, K. S. (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  • Michael Proctor
    • 1
    • 2
  • Malene L. Urbanus
    • 3
    • 4
  • Eula L. Fung
    • 1
  • Daniel F. Jaramillo
    • 1
  • Ronald W. Davis
    • 1
    • 2
    • 6
  • Corey Nislow
    • 3
    • 4
    • 5
  • Guri Giaever
    • 4
    • 5
    • 7
  1. 1.Stanford Genome Technology CenterPalo AltoUSA
  2. 2.Department of BiochemistryStanford UniversityPalo AltoUSA
  3. 3.Banting and Best Department of Medical ResearchUniversity of TorontoTorontoCanada
  4. 4.Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
  5. 5.Department of Molecular GeneticsUniversity of TorontoTorontoCanada
  6. 6.Department of GeneticsStanford UniversityPalo AltoUSA
  7. 7.Department of Pharmaceutical SciencesUniversity of TorontoTorontoCanada

Personalised recommendations