Advertisement

Electron Microscopic Imaging of Integrin

  • Kenji IwasakiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 757)

Abstract

Rotary-shadowed samples often used for electron microscopy do not preserve native integrin conformations. Negatively stained integrins – or, more desirably, unstained integrins in a cryo-condition – are now being used with sophisticated imaging techniques. Additionally, a single-particle analysis (SPA) of integrins is advanced by the recent determination of several crystal structures of integrins. Nevertheless the conformational flexibility of integrins limits the ability of SPA to image physiologic conformations. To solve this problem, we apply electron tomography to purified integrin, thereby obtaining high-quality three-dimensional (3-D) images that fit well to the atomic structures. We have also taken typical SPA approaches to obtain a 3-D reconstruction of integrin, using conditions that favor the bent conformation.

Key words

Integrin Electron microscopy Single-particle analysis Tomography 

Notes

Acknowledgments

The author would like to thank Professor Junichi Takagi for critical reading of this manuscript and for his advice, and Emiko Mihara and Naoyuki Miyazaki for technical assistance. A part of this work was supported by “Nanotechnology Network Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan” at the Research Center for Ultrahigh Voltage Electron Microscopy, Osaka University (Handai multifunctional Nano-Foundry) and the CREST, JST.

References

  1. 1.
    Frank, J. (2006) Three-dimensional electron microscopy of macromolecular assemblies, 2nd ed., Oxford University Press.Google Scholar
  2. 2.
    Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1986) A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli, J. Microsc. 141, RP1-2.Google Scholar
  3. 3.
    Dube, P., Herzog, F., Gieffers, C., Sander, B., Riedel, D., Muller, S. A., Engel, A., Peters, J. M., and Stark, H. (2005) Localization of the coactivator Cdh1 and the cullin subunit Apc2 in a cryo-electron microscopy model of vertebrate APC/C, Mol. Cell 20, 867–879.PubMedCrossRefGoogle Scholar
  4. 4.
    Radermacher, M. (1988) Three-dimensional reconstruction of single particles from random and nonrandom tilt series, J. Electron Microsc. Tech. 9, 359–394.PubMedCrossRefGoogle Scholar
  5. 5.
    Shaikh, T. R., Gao, H., Baxter, W. T., Asturias, F. J., Boisset, N., Leith, A., and Frank, J. (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs, Nat. Protoc. 3, 1941–1974.PubMedCrossRefGoogle Scholar
  6. 6.
    Martin, P., and Papayannopoulou, T. (1982) HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression, Science 216, 1233–1235.PubMedCrossRefGoogle Scholar
  7. 7.
    Tabilio, A., Rosa, J. P., Testa, U., Kieffer, N., Nurden, A. T., Del Canizo, M. C., Breton-Gorius, J., and Vainchenker, W. (1984) Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cell line (HEL), EMBO J. 3, 453–459.PubMedGoogle Scholar
  8. 8.
    Papayannopoulou, T., Nakamoto, B., Yokochi, T., Chait, A., and Kannagi, R. (1983) Human erythroleukemia cell line (HEL) undergoes a drastic macrophage-like shift with TPA, Blood 62, 832–845.PubMedGoogle Scholar
  9. 9.
    Bray, P. F., Rosa, J. P., Lingappa, V. R., Kan, Y. W., McEver, R. P., and Shuman, M. A. (1986) Biogenesis of the platelet receptor for fibrinogen: evidence for separate precursors for glycoproteins IIb and IIIa, Proc. Natl. Acad. Sci. USA. 83, 1480–1484.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamada, T., Uyeda, A., Kidera, A., and Kikuchi, M. (1994) Functional analysis and modeling of a conformationally constrained Arg-Gly-Asp sequence inserted into human lysozyme, Biochemistry 33, 11678–11683.PubMedCrossRefGoogle Scholar
  11. 11.
    Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F., and Ruoslahti, E. (1986) Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp-specific adhesion receptors, Science 231, 1559–1562.PubMedCrossRefGoogle Scholar
  12. 12.
    Pfaff, M., Gohring, W., Brown, J. C., and Timpl, R. (1994) Binding of purified collagen receptors (alpha 1 beta 1, alpha 2 beta 1) and RGD-dependent integrins to laminins and laminin fragments, Eur. J. Biochem. 225, 975–984.PubMedCrossRefGoogle Scholar
  13. 13.
    Takagi, J., Petre, B. M., Walz, T., and Springer, T. A. (2002) Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling, Cell 110, 599–511.PubMedCrossRefGoogle Scholar
  14. 14.
    Chang, H. C., Bao, Z., Yao, Y., Tse, A. G., Goyarts, E. C., Madsen, M., Kawasaki, E., Brauer, P. P., Sacchettini, J. C., Nathenson, S. G., and et al. (1994) A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments, Proc. Natl. Acad. Sci. USA. 91, 11408–11412.PubMedCrossRefGoogle Scholar
  15. 15.
    Takagi, J., Erickson, H. P., and Springer, T. A. (2001) C-terminal opening mimics ‘inside-out’ activation of integrin alpha5beta1, Nat. Struct. Biol. 8, 412–416.PubMedCrossRefGoogle Scholar
  16. 16.
    Stanley, P. (1989) Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity, Mol. Cell. Biol. 9, 377–383.PubMedGoogle Scholar
  17. 17.
    Rose, H. (1984) Infromation transfer in transmission electron microscopy, Ultramicroscopy 15, 173–192.CrossRefGoogle Scholar
  18. 18.
    Fitzgerald, L. A., Leung, B., and Phillips, D. R. (1985) A method for purifying the platelet membrane glycoprotein IIb-IIIa complex, Anal. Biochem. 151, 169–177.PubMedCrossRefGoogle Scholar
  19. 19.
    Quispe, J., Damiano, J., Mick, S. E., Nackashi, D. P., Fellmann, D., Ajero, T. G., Carragher, B., and Potter, C. S. (2007) An improved holey carbon film for cryo-electron microscopy, Microsc. Microanal. 13, 365–371.PubMedCrossRefGoogle Scholar
  20. 20.
    Iwasaki, K., Mitsuoka, K., Fujiyoshi, Y., Fujisawa, Y., Kikuchi, M., Sekiguchi, K., and Yamada, T. (2005) Electron tomography reveals diverse conformations of integrin alphaIIbbeta3 in the active state, J. Struct. Biol. 150, 259–267.PubMedCrossRefGoogle Scholar
  21. 21.
    Hesse, J., Hebert, H., and Koeck, P. J. (2000) Evaluation of scanners and CCD cameras for high-resolution TEM of protein crystals and single particles, Microsc. Res. Tech. 49, 292–300.PubMedCrossRefGoogle Scholar
  22. 22.
    Ludtke, S. J., Booth, C. R., Serysheva, I. I., Chen, D.-H., and Chiu, W. (2005) Single Particle Reconstructions at Subnanometer Resolution from a JEOL 2010 F and a 4 k  ×  4 k Gatan CCD Camera. Microsc. Microanal. 11(Suppl 2), 60–61.Google Scholar
  23. 23.
    Kremer, J. R., Mastronarde, D. N., and McIntosh, J. R. (1996) Computer visualization of three-dimensional image data using IMOD, J. Struct. Biol. 116, 71–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Gilbert, P. (1972) Iterative methods for the three-dimensional reconstruction of an object from projections, J. Theor. Biol. 36, 105–117.PubMedCrossRefGoogle Scholar
  25. 25.
    van Heel, M., and Frank, J. (1981) Use of multivariate statistics in analysing the images of biological macromolecules, Ultramicroscopy 6, 187–194.PubMedGoogle Scholar
  26. 26.
    Walz, J., Typke, D., Nitsch, M., Koster, A. J., Hegerl, R., and Baumeister, W. (1997) Electron Tomography of Single Ice-Embedded Macromolecules: Three-Dimensional Align-ment and Classification, J. Struct. Biol. 120, 387–395.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu, J., Luo, B. H., Xiao, T., Zhang, C., Nishida, N., and Springer, T. A. (2008) Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces, Mol. Cell 32, 849–861.PubMedCrossRefGoogle Scholar
  28. 28.
    Xiao, T., Takagi, J., Coller, B. S., Wang, J. H., and Springer, T. A. (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics, Nature 432, 59–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Springer, T. A., Zhu, J., and Xiao, T. (2008) Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3, J. Cell Biol. 182, 791–800.PubMedCrossRefGoogle Scholar
  30. 30.
    Carman, C. V., and Springer, T. A. (2003) Integrin avidity regulation: are changes in affinity and conformation underemphasized?, Curr. Opin Cell Biol. 15, 547–556.PubMedCrossRefGoogle Scholar
  31. 31.
    Takagi, J., Strokovich, K., Springer, T. A., and Walz, T. (2003) Structure of integrin alpha5beta1 in complex with fibronectin, EMBO J. 22, 4607–4615.PubMedCrossRefGoogle Scholar
  32. 32.
    Xiong, J. P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D. L., Joachimiak, A., Goodman, S. L., and Arnaout, M. A. (2001) Crystal structure of the extracellular segment of integrin alphaVbeta3, Science 294, 339–345.PubMedCrossRefGoogle Scholar
  33. 33.
    Glaeser, R. M. (1999) Review: electron crystallography: present excitement, a nod to the past, anticipating the future, J. Struct. Biol. 128, 3–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Henderson, R. (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules, Q. Rev. Biophys. 28, 171–193.PubMedCrossRefGoogle Scholar
  35. 35.
    Brink, J., Chiu, W., and Dougherty, M. (1992) Computer-controlled spot-scan imaging of crotoxin complex crystals with 400 keV electrons at near-atomic resolution, Ultramicroscopy 46, 229–240.PubMedCrossRefGoogle Scholar
  36. 36.
    Smith, R., and Carragher, B. (2008) Software tools for molecular microscopy, J. Struct. Biol. 163, 224–228.PubMedCrossRefGoogle Scholar
  37. 37.
    Klug, A., and Berger, J. E. (1964) An Optical Method for the Analysis of Periodicities in Electron Micrographs, and Some Observations on the Mechanism of Negative Staining, J. Mol. Biol. 10, 565–569.PubMedCrossRefGoogle Scholar
  38. 38.
    Finch, J. T. (1964) Resolution of the Substructure of Tobacco Mosaic Virus in the Electron Microscope, J. Mol. Biol. 8, 872–874.PubMedCrossRefGoogle Scholar
  39. 39.
    Kendall, A., McDonald, M., and Stubbs, G. (2007) Precise determination of the helical repeat of tobacco mosaic virus, Virology 369, 226–227.PubMedCrossRefGoogle Scholar
  40. 40.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem. 25, 1605–1612.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Research Center for Structural and Functional Proteomics, Institute for Protein ResearchOsaka UniversitySuitaJapan

Personalised recommendations