Isolation of Focal Adhesion Proteins for Biochemical and Proteomic Analysis

  • Jean-Cheng Kuo
  • Xuemei Han
  • John R. YatesIII
  • Clare M. Waterman
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 757)

Abstract

Focal adhesions (FAs) are discrete plasma membrane-associated adhesive organelles that play dual roles in cell force transduction and signaling. FAs consist of clustered transmembrane heterodimeric integrin extracellular matrix (ECM) receptors and a large number of cytoplasmic proteins that collectively form thin plaques linking the ECM to actin filament bundles of the cytoskeleton. FAs are complex organelles that can change their composition in response to biochemical or mechanical cues. These compositional differences may underlie the ability of FAs to mediate an array of important cell functions including adhesion, signaling, force transduction, and regulation of the cytoskeleton. These functions contribute to the physiological processes of the immune response, development, and differentiation. However, linking FA composition to FA function has been difficult since there has been no method to isolate intact FAs reproducibly and determine their composition. We report here a new method for isolating FA structures in cultured cells distinct from cytoplasmic, nuclear, and internal membranous organellar components of the cell. We provide protocols for validation of the fractionation by immunofluorescence and immunoblotting, procedures for preparing the isolated FAs for mass spectrometric proteomic analysis, tips on data interpretation and analysis, and an approach for comparing FA composition in cells in which small GTPase signaling is perturbed.

Key words

Focal adhesion Immunofluorescence Western blotting Mass spectrometry Integrin 

References

  1. 1.
    Bershadsky A.D., Balaban N.Q., and Geiger B. (2003). Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677695.PubMedCrossRefGoogle Scholar
  2. 2.
    Burridge K., Fath K., Kelly T., Nuckolls G., and Turner C. (1988). Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4, 487525.PubMedCrossRefGoogle Scholar
  3. 3.
    Hynes R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673687.PubMedCrossRefGoogle Scholar
  4. 4.
    Discher D.E., Janmey P., and Wang Y.L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science 310, 11391143.PubMedCrossRefGoogle Scholar
  5. 5.
    Lauffenburger D.A. and Horwitz A.F. (1996). Cell migration: a physically integrated molecular process. Cell 84, 359–369.PubMedCrossRefGoogle Scholar
  6. 6.
    Zamir E. and Geiger B. (2001). Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114, 3583–3590.PubMedGoogle Scholar
  7. 7.
    Zaidel-Bar R., Itzkovitz S., Ma’ayan A., Iyengar R., and Geiger B. (2007). Functional atlas of the integrin adhesome. Nat. Cell Biol. 9, 858–867.PubMedCrossRefGoogle Scholar
  8. 8.
    Katoh K., Kano Y., Masuda M., Onishi H., and Fujiwara K. (1998). Isolation and contraction of the stress fiber. Mol. Biol. Cell 9, 1919–1938.PubMedGoogle Scholar
  9. 9.
    Brown M.C. and Turner C.E. (2004). Paxillin: adapting to change. Physiol. Rev. 84, 1315–1339.PubMedCrossRefGoogle Scholar
  10. 10.
    Murphy, D.B. (2001). Fundamentals of light microscopy and electronic imaging. pp. 85–91. Wiley-Liss, New York.Google Scholar
  11. 11.
    Han X., Aslanian A., and Yates J.R., III (2008). Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12, 483490.PubMedCrossRefGoogle Scholar
  12. 12.
    Washburn M.P., Wolters D., and Yates J.R., III (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.PubMedCrossRefGoogle Scholar
  13. 13.
    Bern M., Goldberg D., McDonald W.H., and Yates J.R., III (2004). Automatic quality assessment of peptide tandem mass spectra. Bioinformatics. 20, s49–s54.CrossRefGoogle Scholar
  14. 14.
    Eng J.K., McCormack A.L., and Yates J.R., III (94 A.D.). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976989.Google Scholar
  15. 15.
    Peng J., Elias J.E., Thoreen C.C., Licklider L.J., and Gygi S.P. (2003). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome. Res. 2, 4350.PubMedCrossRefGoogle Scholar
  16. 16.
    Peng J., Schwartz D., Elias J.E., Thoreen C.C., Cheng D., Marsischky G., Roelofs J., Finley D., and Gygi S.P. (2003). A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921926.PubMedCrossRefGoogle Scholar
  17. 17.
    Sadygov R.G., Eng J., Durr E., Saraf A., McDonald H., MacCoss M.J., and Yates J.R., III (2002). Code developments to improve the efficiency of automated MS/MS spectra interpretation. J. Proteome. Res. 1, 211215.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen E.I., Hewel J., Krueger J.S., Tiraby C., Weber M.R., Kralli A., Becker K., Yates J.R., III, and Felding-Habermann B. (2007). Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res. 67, 14721486.PubMedCrossRefGoogle Scholar
  19. 19.
    Tabb D.L., McDonald W.H., and Yates J.R., III (2002). DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome. Res. 1, 2126.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu H., Sadygov R.G., and Yates J.R., III (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 41934201.PubMedCrossRefGoogle Scholar
  21. 21.
    Etienne-Manneville S. and Hall A. (2002). Rho GTPases in cell biology. Nature 420, 629635.PubMedCrossRefGoogle Scholar
  22. 22.
    Paoletti A.C., Parmely T.J., Tomomori-Sato C., Sato S., Zhu D., Conaway R.C., Conaway J.W., Florens L., and Washburn M.P. (2006). Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc. Natl. Acad. Sci. USA 103, 18928–18933.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jean-Cheng Kuo
    • 1
  • Xuemei Han
    • 2
  • John R. YatesIII
    • 2
  • Clare M. Waterman
    • 1
  1. 1.Cell Biology and Physiology Center, National HeartLung, and Blood InstituteBethesdaUSA
  2. 2.Cell BiologyScripps Research InstituteLa JollaUSA

Personalised recommendations