Overview: Imaging in the Study of Integrins

Part of the Methods in Molecular Biology book series (MIMB, volume 757)


Integrins play critical adhesion and signaling roles during development, wound healing, immunity, and cancer. Central to their function is a unique ability to dynamically modulate their adhesiveness and signaling properties through changes in conformation, both homo- and heterotypic protein–protein interactions and cellular distribution. Genetic, biochemical and structural studies have been instrumental in uncovering overall functions, describing ligand and regulatory protein interactions and elucidating the molecular architecture of integrins. However, such approaches alone are inadequate to describe how dynamic integrin behaviors are orchestrated in intact cells. To fill this void, a wide array of distinct light microscopy (largely fluorescence-based) imaging approaches have been developed and employed. Various microscopy technologies, including wide-field, optical sectioning (laser-scanning confocal, spinning-disk confocal, and multiphoton), TIRF and range of novel “Super-Resolution” techniques have been used in combination with diverse imaging modalities (such as IRM, FRET, FRAP, CALI, and fluorescence speckle imaging) to address distinct aspects of integrin function and regulation. This chapter provides an overview of these imaging approaches and how they have advanced our understanding of integrins.

Key words

Integrin Fluorescence Microscopy FRET GFP Conformation Clustering, migration Adhesion 



This work was supported by the Arthritis Foundation, American Heart Association, and Roche Organ Transplant Research Foundation.


  1. 1.
    Luo, B.-H., Carman, C. V., and Springer, T. A. (2007) Structural basis of integrin regulation and signaling, Annu. Rev. Immunol. 25, 619–647.PubMedCrossRefGoogle Scholar
  2. 2.
    Nermut, M. V., Green, N. M., Eason, P., Yamada, S. S., and Yamada, K. M. (1988) Electron microscopy and structural model of human fibronectin receptor, EMBO J. 7, 4093–4099.PubMedGoogle Scholar
  3. 3.
    Xiong, J.-P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D. L., Joachimiak, A., Goodman, S. L., and Arnaout, M. A. (2001) Crystal structure of the extracellular segment of integrin αVβ3, Science 294, 339–345.PubMedCrossRefGoogle Scholar
  4. 4.
    Xiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnaout, M. A. (2002) Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand, Science 296, 151–155.PubMedCrossRefGoogle Scholar
  5. 5.
    Carman, C. V., and Springer, T. A. (2003) Integrin avidity regulation: Are changes in affinity and conformation underemphasized?, Curr. Opin. Cell Biol. 15, 547–556.PubMedCrossRefGoogle Scholar
  6. 6.
    Miranti, C. K., and Brugge, J. S. (2002) Sensing the environment: a historical perspective on integrin signal transduction, Nat. Cell Biol. 4, E83–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Constantin, G., Majeed, M., Giagulli, C., Piccib, L., Kim, J. Y., Butcher, E. C., and Laudanna, C. (2000) Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow, Immunity 13, 759–769.PubMedCrossRefGoogle Scholar
  8. 8.
    Chan, J. R., Hyduk, S. J., and Cybulsky, M. I. (2001) Chemoattractants induce rapid and transient upregulation of monocyte alpha4 integrin affinity for vascular adhesion molecule 1 which mediates arrest: an early step in the process of emmigration, J. Exp. Med. 193, 1149–1158.PubMedCrossRefGoogle Scholar
  9. 9.
    Chan, J. R., Hyduk, S. J., and Cybulsky, M. I. (2003) Detecting rapid and transient upregulation of leukocyte integrin affinity induced by chemokines and chemoattractants, J. Immunol. Meth. 273, 43–52.CrossRefGoogle Scholar
  10. 10.
    Shimaoka, M., Kim, M., Cohen, E. H., Yang, W., Astrof, N., Peer, D., Salas, A., Ferrand, A., and Springer, T. A. (2006) AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity up-regulation in lymphocytes, Proc. Natl. Acad. Sci. USA. 103, 13991–13996.PubMedCrossRefGoogle Scholar
  11. 11.
    Takagi, J., Petre, B. M., Walz, T., and Springer, T. A. (2002) Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling, Cell 110, 599–611.PubMedCrossRefGoogle Scholar
  12. 12.
    Takagi, J., Strokovich, K., Springer, T. A., and Walz, T. (2003) Structure of integrin α5β1 in complex with fibronectin, EMBO J. 22, 4607–4615.PubMedCrossRefGoogle Scholar
  13. 13.
    Kim, M., Carman, C. V., and Springer, T. A. (2003) Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins, Science 301, 1720–1725.PubMedCrossRefGoogle Scholar
  14. 14.
    Xiao, T., Takagi, J., Wang, J.-h., Coller, B. S., and Springer, T. A. (2004) Structural basis for allostery in integrins and binding of ligand-mimetic therapeutics to the platelet receptor for fibrinogen, Nature 432, 59–67.Google Scholar
  15. 15.
    Li, R., Babu, C. R., Lear, J. D., Wand, A. J., Bennett, J. S., and Degrado, W. F. (2001) Oligomerization of the integrin αIIbβ3: Roles of the transmembrane and cytoplasmic domains, Proc. Natl. Acad. Sci. USA. 98, 12462–12467.PubMedCrossRefGoogle Scholar
  16. 16.
    Li, R., Mitra, N., Gratkowski, H., Vilaire, G., Litvinov, S. V., Nagasami, C., Weisel, J. W., Lear, J. D., DeGrado, W. F., and Bennett, J. S. (2003) Activation of integrin αIIbβ3 by modulation of transmembrane helix associations, Science 300, 795–798.PubMedCrossRefGoogle Scholar
  17. 17.
    Fu, G., Wang, C., Wang, G. Y., Chen, Y. Z., He, C., and Xu, Z. Z. (2006) Detection of constitutive homomeric associations of the integrins Mac-1 subunits by fluorescence resonance energy transfer in living cells, Biochem. Biophys. Res. Commun. 351, 847–852.PubMedCrossRefGoogle Scholar
  18. 18.
    Vararattanavech, A., Lin, X., Torres, J., and Tan, S. M. (2009) Disruption of the integrin alphaLbeta2 transmembrane domain interface by beta2 Thr-686 mutation activates alphaLbeta2 and promotes micro-clustering of the alphaL subunits, J..Biol. Chem. 284, 3239–3249.PubMedCrossRefGoogle Scholar
  19. 19.
    Jin, T., and Li, J. (2002) Dynamitin controls β2 integrin avidity by modulating cytoskeletal constraint on integrin molecules, J. Biol. Chem. 277, 32963–32969.PubMedCrossRefGoogle Scholar
  20. 20.
    Kucik, D. F., Dustin, M. L., Miller, J. M., and Brown, E. J. (1996) Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes, J. Clin. Invest. 97, 2139–2144.PubMedCrossRefGoogle Scholar
  21. 21.
    Peters, I. M., van Kooyk, Y., van Vliet, S. J., de Grooth, B. G., Figdor, C. G., and Greve, J. (1999) 3D single-particle tracking and optical trap measurements on adhesion proteins, Cytometry 36, 189–194.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith, A., Carrasco, Y. R., Stanley, P., Kieffer, N., Batista, F. D., and Hogg, N. (2005) A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes, J. Cell Biol. 170, 141–151.PubMedCrossRefGoogle Scholar
  23. 23.
    Felsenfeld, D. P., Choquet, D., and Sheetz, M. P. (1996) Ligand binding regulates the directed movement of β1 integrins on fibroblasts, Nature 383, 438–440.PubMedCrossRefGoogle Scholar
  24. 24.
    Leitinger, B., and Hogg, N. (2001) The involvement of lipid rafts in the regulation of integrins function, J. Cell Sci. 115, 963–972.Google Scholar
  25. 25.
    Hogg, N., Henderson, R., Leitinger, B., McDowall, A., Porter, J., and Stanley, P. (2002) Mechanisms contributing to the activity of integrins on leukocytes, Immunol. Rev. 186, 164–171.PubMedCrossRefGoogle Scholar
  26. 26.
    Shamri, R., Grabovinsky, V., Feigelson, S. W., Dwir, O., van Kooyk, Y., and Alon, R. (2002) Chemokine stimulation of lymphocyte α4 integrin avidity but not leukocyte functional-associated antigen-1 avidity to endothelial ligands under shear flow requires cholesterol membrane rafts, J. Biol. Chem. 277, 40027–40035.PubMedCrossRefGoogle Scholar
  27. 27.
    Krauss, K., and Altevogt, P. (1999) Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts, J. Biol. Chem. 274, 36921–36927.PubMedCrossRefGoogle Scholar
  28. 28.
    Hemler, M. E. (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain, Annu. Rev. Cell Devel. Bio. 19, 397–422.CrossRefGoogle Scholar
  29. 29.
    Petty, H. R., Worth, R. G., and Todd, R. F. r. (2002) Interactions of integrins with their partner proteins in leukocyte membranes, Immunol. Res. 25, 75–95.Google Scholar
  30. 30.
    Shattil, S. J., P. J. Newman. (2004) Integrins: dynamic scaffolds for adhesion and signaling in platelets, Blood 104, 1606–1615.PubMedCrossRefGoogle Scholar
  31. 31.
    Grashoff, C., Thievessen, I., Lorenz, K., Ussar, S., and Fassler, R. (2004) Integrin-linked kinase: integrin’s mysterious partner, Curr. Opin. Cell Biol. 16, 565–571.PubMedCrossRefGoogle Scholar
  32. 32.
    Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R. (2003) Cell migration: integrating signals from front to back, Science 302, 1704–1709.PubMedCrossRefGoogle Scholar
  33. 33.
    Guo, W., and Giancotti, F. G. (2004) Integrin signalling during tumour progression, Nat. Rev. Mol. Cell Biol. 5, 816–826.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhu, J., Carman, C. V., Kim, M., Shimaoka, M., Springer, T. A., and Luo, B. H. (2007) Requirement of alpha and beta subunit transmembrane helix separation for integrin outside-in signaling, Blood 110, 2475–2483.PubMedCrossRefGoogle Scholar
  35. 35.
    Plancon, S., Morel-Kopp, M. C., Schaffner-Reckinger, E., Chen, P., and Kieffer, N. (2001) Green fluorescent protein (GFP) tagged to the cytoplasmic tail of αIIb or β3 allows the expression of a fully functional integrin αIIbβ3: effect of β3GFP on αIIbβ3 ligand binding, Biochem. J. 357, 529–536.PubMedCrossRefGoogle Scholar
  36. 36.
    Laukaitis, C. M., Webb, D. J., Donais, K., and Horwitz, A. F. (2001) Differential dynamics of α5 integrin, paxillin, and α-actinin during formation and disassembly of adhesions in migrating cells, J. Cell Biol. 153, 1427–1440.PubMedCrossRefGoogle Scholar
  37. 37.
    Dustin, M. L. (2009) Supported bilayers at the vanguard of immune cell activation studies, J. Struct. Biol. 168, 152–160.PubMedCrossRefGoogle Scholar
  38. 38.
    Cairo, C. W., Mirchev, R., and Golan, D. E. (2006) Cytoskeletal regulation couples LFA-1 conformational changes to receptor lateral mobility and clustering, Immunity 25, 297–308.PubMedCrossRefGoogle Scholar
  39. 39.
    Lawson, M. A., and Maxfield, F. R. (1995) Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils, Nature 377, 75–79.PubMedCrossRefGoogle Scholar
  40. 40.
    Tohyama, Y., Katagiri, K., Pardi, R., Lu, C., Springer, T. A., and Kinashi, T. (2003) The critical cytoplasmic regions of the αL/β2 integrin in Rap1-induced adhesion and migration, Mol. Biol. Cell 14, 2570–2582.PubMedCrossRefGoogle Scholar
  41. 41.
    Katagiri, K., Maeda, A., Shimonaka, M., and Kinashi, T. (2003) RAPL, a novel Rap1-binding molecule, mediates Rap1-induced adhesion through spatial regulation of LFA-1, Nat. Immunol. 4, 741–748.PubMedCrossRefGoogle Scholar
  42. 42.
    Shimonaka, M., Katagiri, K., Kakayama, T., Fujita, N., Tsuruo, T., Yoshie, O., and Kinashi, T. (2003) Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow, J. Cell Biol. 161, 417–427.PubMedCrossRefGoogle Scholar
  43. 43.
    Centonze Frohlich, V. (2008) Phase contrast and differential interference contrast (DIC) microscopy, J. Vis. Exp. 6, 844.Google Scholar
  44. 44.
    Verschueren, H. (1985) Interference reflection microscopy in cell biology: Methodology and applications, J. Cell. Sci. 75, 279–301.PubMedGoogle Scholar
  45. 45.
    Bailly, M., Condeelis, J. S., and Segall, J. E. (1998) Chemoattractant-induced lamellipod extension, Microsc. Res. Tech. 43, 433–443.PubMedCrossRefGoogle Scholar
  46. 46.
    Neumeister, P., Pixley, F. J., Xiong, Y., Xie, H., Wu, K., Ashton, A., Cammer, M., Chan, A., Symons, M., Stanley, E. R., and Pestell, R. G. (2003) Cyclin D1 governs adhesion and motility of macrophages, Mol. Biol. Cell 14, 2005–2015.PubMedCrossRefGoogle Scholar
  47. 47.
    Linder, S. (2009) Invadosomes at a glance, J. Cell Sci. 122, 3009–3013.PubMedCrossRefGoogle Scholar
  48. 48.
    Ritchie, K., and Kusumi, A. (2003) Single-particle tracking image microscopy, Meth. Enzymol. 360, 618–634.PubMedCrossRefGoogle Scholar
  49. 49.
    Giepmans, B. N., Adams, S. R., Ellisman, M. H., and Tsien, R. Y. (2006) The fluorescent toolbox for assessing protein location and function, Science 312, 217–224.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang, Y., Shyy, J. Y., and Chien, S. (2008) Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing, Annu Rev. Biomed. Eng. 10, 1–38.PubMedCrossRefGoogle Scholar
  51. 51.
    Bonasio, R., Carman, C. V., Kim, E., Sage, P. T., Love, K. R., Mempel, T. R., Springer, T. A., and von Andrian, U. H. (2007) Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots, Proc. Natl. Acad. Sci. USA. 104, 14753–14758.PubMedCrossRefGoogle Scholar
  52. 52.
    Chigaev, A., Buranda, T., Dwyer, D. C., Prossnitz, E. R., and Sklar, L. A. (2003) FRET detection of cellular alpha4-integrin conformational activation, Biophys J. 85, 3951–3962.PubMedCrossRefGoogle Scholar
  53. 53.
    Larson, R. S., Davis, T., Bologa, C., Semenuk, G., Vijayan, S., Li, Y., Oprea, T., Chigaev, A., Buranda, T., Wagner, C. R., and Sklar, L. A. (2005) Dissociation of I domain and global conformational changes in LFA-1: refinement of small molecule-I domain structure-activity relationships, Biochemistry 44, 4322–4331.PubMedCrossRefGoogle Scholar
  54. 54.
    Barreiro, O., Yanez-Mo, M., Serrador, J. M., Montoya, M. C., Vicente-Manzanares, M., Tejedor, R., Furthmayr, H., and Sanchez-Madrid, F. (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes, J. Cell Biol. 157, 1233–1245.PubMedCrossRefGoogle Scholar
  55. 55.
    Carman, C. V., Jun, C. D., Salas, A., and Springer, T. A. (2003) Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1, J. Immunol. 171, 6135–6144.PubMedGoogle Scholar
  56. 56.
    Carman, C. V., and Springer, T. A. (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them, J. Cell Biol. 167, 377–388.PubMedCrossRefGoogle Scholar
  57. 57.
    Carman, C. V., Sage, P. T., Sciuto, T. E., de la Fuente, M. A., Geha, R. S., Ochs, H. D., Dvorak, H. F., Dvorak, A. M., and Springer, T. A. (2007) Transcellular diapedesis is initiated by invasive podosomes, Immunity 26, 784–797.PubMedCrossRefGoogle Scholar
  58. 58.
    Yang, L., Froio, R. M., Sciuto, T. E., Dvorak, A. M., Alon, R., and Luscinskas, F. W. (2005) ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow, Blood 106, 584–592.PubMedCrossRefGoogle Scholar
  59. 59.
    Paddock, S. W. (1999) An introduction to confocal imaging, Meth. Mol. Biol. 122, 1–34.Google Scholar
  60. 60.
    Maddox, P. S., Moree, B., Canman, J. C., and Salmon, E. D. (2003) Spinning disk confocal microscope system for rapid high-resolution, multimode, fluorescence speckle microscopy and green fluorescent protein imaging in living cells, Meth. Enzymol. 360, 597–617.PubMedCrossRefGoogle Scholar
  61. 61.
    Graf, R., Rietdorf, J., and Zimmermann, T. (2005) Live cell spinning disk microscopy, Adv. Biochem. Eng. Biotechnol. 95, 57–75.PubMedGoogle Scholar
  62. 62.
    Rubart, M. (2004) Two-photon microscopy of cells and tissue, Circulation Res. 95, 1154–1166.PubMedCrossRefGoogle Scholar
  63. 63.
    Zarbock, A., and Ley, K. (2009) New insights into leukocyte recruitment by intravital microscopy, Curr. Top. Microbiol. Immunol. 334, 129–152.PubMedCrossRefGoogle Scholar
  64. 64.
    Fish, K. N. (2009) Total internal reflection fluorescence (TIRF) microscopy, Current Protoc. Cytometry J. Paul Robinson, Ed. Chapter 12, Unit12 18.Google Scholar
  65. 65.
    Hyun, Y. M., Chung, H. L., McGrath, J. L., Waugh, R. E., and Kim, M. (2009) Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-1, J. Immunol. 183, 359–369.PubMedCrossRefGoogle Scholar
  66. 66.
    Shroff, H., Galbraith, C. G., Galbraith, J. A., and Betzig, E. (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics, Nat. Meth. 5, 417–423.CrossRefGoogle Scholar
  67. 67.
    Shroff, H., White, H., and Betzig, E. (2008) Photoactivated localization microscopy (PALM) of adhesion complexes, Curr. Protoc. Cell Biol. Juan S. Bonifacino, Ed. Chapter 4, Unit 4 21.Google Scholar
  68. 68.
    Vicente-Manzanares, M., Koach, M. A., Whitmore, L., Lamers, M. L., and Horwitz, A. F. (2008) Segregation and activation of myosin IIB creates a rear in migrating cells, J. Cell Biol. 183, 543–554.PubMedCrossRefGoogle Scholar
  69. 69.
    Liu, D., Bryceson, Y. T., Meckel, T., Vasiliver-Shamis, G., Dustin, M. L., and Long, E. O. (2009) Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses, Immunity 31, 99–109.PubMedCrossRefGoogle Scholar
  70. 70.
    Koster, A. J., and Klumperman, J. (2003) Electron microscopy in cell biology: integrating structure and function, Nat. Rev. Mol. Cell Biol. Suppl , SS6–10.Google Scholar
  71. 71.
    Hell, S. W. (2007) Far-field optical nanoscopy, Science 316, 1153–1158.PubMedCrossRefGoogle Scholar
  72. 72.
    de Lange, F., Cambi, A., Huijbens, R., de Bakker, B., Rensen, W., Garcia-Parajo, M., van Hulst, N., and Figdor, C. G. (2001) Cell biology beyond the diffraction limit: near-field scanning optical microscopy, J. Cell Sci. 114, 4153–4160.PubMedGoogle Scholar
  73. 73.
    van Zanten, T. S., Cambi, A., Koopman, M., Joosten, B., Figdor, C. G., and Garcia-Parajo, M. F. (2009) Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion, Proc. Natl. Acad. Sci. USA. 106, 18557–18562.PubMedCrossRefGoogle Scholar
  74. 74.
    Henriques, R., and Mhlanga, M. M. (2009) PALM and STORM: what hides beyond the Rayleigh limit?, Biotechnol. J. 4, 846–857.PubMedCrossRefGoogle Scholar
  75. 75.
    Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J., and Hess, H. F. (2006) Imaging intracellular fluorescent proteins at nanometer resolution, Science 313, 1642–1645.PubMedCrossRefGoogle Scholar
  76. 76.
    Rust, M. J., Bates, M., and Zhuang, X. (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Meth. 3, 793–795.CrossRefGoogle Scholar
  77. 77.
    Wang, Y., and Chien, S. (2007) Analysis of integrin signaling by fluorescence resonance energy transfer, Meth. Enzymol. 426, 177–201.PubMedCrossRefGoogle Scholar
  78. 78.
    Periasamy, A. (2001) Fluorescence resonance energy transfer microscopy: a mini review, J. Biomed. Opt. 6, 287–291.PubMedCrossRefGoogle Scholar
  79. 79.
    Buensuceso, C., De Virgilio, M., and Shattil, S. J. (2003) Detection of integrin αIIbβ3 clustering in living cells, J. Biol. Chem. 278 , 1521715224.PubMedCrossRefGoogle Scholar
  80. 80.
    Vararattanavech, A., Tang, M. L., Li, H. Y., Wong, C. H., Law, S. K., Torres, J., and Tan, S. M. (2008) Permissive transmembrane helix heterodimerization is required for the expression of a functional integrin, Biochem. J. 410, 495–502.PubMedCrossRefGoogle Scholar
  81. 81.
    Fu, G., Yang, H. Y., Wang, C., Zhang, F., You, Z. D., Wang, G. Y., He, C., Chen, Y. Z., and Xu, Z. Z. (2006) Detection of constitutive heterodimerization of the integrin Mac-1 subunits by fluorescence resonance energy transfer in living cells, Biochem. Biophys. Res. Commun. 346, 986–991.PubMedCrossRefGoogle Scholar
  82. 82.
    Tang, M. L., Vararattanavech, A., and Tan, S. M. (2008) Urokinase-type plasminogen activator receptor induces conformational changes in the integrin alphaMbeta2 headpiece and reorientation of its transmembrane domains, J. Biol. Chem. 283, 25392–25403.PubMedCrossRefGoogle Scholar
  83. 83.
    Chigaev, A., Waller, A., Amit, O., and Sklar, L. A. (2008) Galphas-coupled receptor signaling actively down-regulates alpha4beta1-integrin affinity: a possible mechanism for cell de-adhesion, BMC Immunol. 9, 26.PubMedCrossRefGoogle Scholar
  84. 84.
    Coutinho, A., Garcia, C., Gonzalez-Rodriguez, J., and Lillo, M. P. (2007) Conformational changes in human integrin alphaIIbbeta3 after platelet activation, monitored by FRET, Biophys. Chem. 130, 76–87.PubMedCrossRefGoogle Scholar
  85. 85.
    Kim, M., Carman, C. V., Yang, W., Salas, A., and Springer, T. A. (2004) The primacy of affinity over clustering in regulation of adhesiveness of the integrin {alpha}L{beta}2, J. Cell Biol. 167, 1241–1253.PubMedCrossRefGoogle Scholar
  86. 86.
    Smith, E. A., Bunch, T. A., and Brower, D. L. (2007) General in vivo assay for the study of integrin cell membrane receptor microclustering, Anal. Chem. 79, 3142–3147.PubMedCrossRefGoogle Scholar
  87. 87.
    Deakin, N. O., Bass, M. D., Warwood, S., Schoelermann, J., Mostafavi-Pour, Z., Knight, D., Ballestrem, C., and Humphries, M. J. (2009) An integrin-alpha4-14-3-3zeta-paxillin ternary complex mediates localised Cdc42 activity and accelerates cell migration, J. Cell Sci. 122, 1654–1664.PubMedCrossRefGoogle Scholar
  88. 88.
    Mocanu, M. M., Fazekas, Z., Petras, M., Nagy, P., Sebestyen, Z., Isola, J., Timar, J., Park, J. W., Vereb, G., and Szollosi, J. (2005) Associations of ErbB2, beta1-integrin and lipid rafts on Herceptin (Trastuzumab) resistant and sensitive tumor cell lines, Cancer Lett. 227, 201–212.PubMedCrossRefGoogle Scholar
  89. 89.
    Ng, T., Shima, D., Squire, A., Bastiaens, P. I., Gschmeissner, S., Humphries, M. J., and Parker, P. J. (1999) PKCalpha regulates beta1 integrin-dependent cell motility through association and control of integrin traffic, EMBO J. 18, 3909–3923.PubMedCrossRefGoogle Scholar
  90. 90.
    Parsons, M., Messent, A. J., Humphries, J. D., Deakin, N. O., and Humphries, M. J. (2008) Quantification of integrin receptor agonism by fluorescence lifetime imaging, J. Cell Sci. 121, 265–271.PubMedCrossRefGoogle Scholar
  91. 91.
    Stroeken, P. J., Alvarez, B., Van Rheenen, J., Wijnands, Y. M., Geerts, D., Jalink, K., and Roos, E. (2006) Integrin cytoplasmic domain-associated protein-1 (ICAP-1) interacts with the ROCK-I kinase at the plasma membrane, J. Cell. Physiol. 208, 620–628.PubMedCrossRefGoogle Scholar
  92. 92.
    Vielreicher, M., Harms, G., Butt, E., Walter, U., and Obergfell, A. (2007) Dynamic interaction between Src and C-terminal Src kinase in integrin alphaIIbbeta3-mediated signaling to the cytoskeleton, J. Biol. Chem. 282, 33623–33631.PubMedCrossRefGoogle Scholar
  93. 93.
    Lele, T. P., Thodeti, C. K., and Ingber, D. E. (2006) Force meets chemistry: analysis of mechanochemical conversion in focal adhesions using fluorescence recovery after photobleaching, J. Cell. Biochem 97, 1175–1183.PubMedCrossRefGoogle Scholar
  94. 94.
    Chown, M. G., and Kumar, S. (2007) Imaging and manipulating the structural machinery of living cells on the micro- and nanoscale, Int. J. Nanomed. 2, 333–344.CrossRefGoogle Scholar
  95. 95.
    Hu, K., Ji, L., Applegate, K. T., Danuser, G., and Waterman-Storer, C. M. (2007) Differential transmission of actin motion within focal adhesions, Science 315, 111–115.PubMedCrossRefGoogle Scholar
  96. 96.
    Bulina, M. E., Lukyanov, K. A., Britanova, O. V., Onichtchouk, D., Lukyanov, S., and Chudakov, D. M. (2006) Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed, Nat. Protoc. 1, 947–953.PubMedCrossRefGoogle Scholar
  97. 97.
    Rajfur, Z., Roy, P., Otey, C., Romer, L., and Jacobson, K. (2002) Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins, Nat. Cell Biol. 4, 286–293.PubMedCrossRefGoogle Scholar
  98. 98.
    Alon, R., and Dustin, M. L. (2007) Force as a Facilitator of Integrin Conformational Changes during Leukocyte Arrest on Blood Vessels and Antigen-Presenting Cells, Immunity 26, 17–27.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang, N., Tytell, J. D., and Ingber, D. E. (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus, Nat. Rev. Mol. Cell Biol. 10, 75–82.PubMedCrossRefGoogle Scholar
  100. 100.
    Puklin-Faucher, E., and Sheetz, M. P. (2009) The mechanical integrin cycle, J. Cell Sci. 122, 179–186.PubMedCrossRefGoogle Scholar
  101. 101.
    Cai, Y., and Sheetz, M. P. (2009) Force propagation across cells: mechanical coherence of dynamic cytoskeletons, Curr. Opin. Cell Biol. 21, 47–50.PubMedCrossRefGoogle Scholar
  102. 102.
    Sabouri-Ghomi, M., Wu, Y., Hahn, K., and Danuser, G. (2008) Visualizing and quantifying adhesive signals, Curr. Opin. Cell Biol. 20, 541–550.PubMedCrossRefGoogle Scholar
  103. 103.
    Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y., and Chien, S. (2005) Visualizing the mechanical activation of Src, Nature 434, 1040–1045.PubMedCrossRefGoogle Scholar
  104. 104.
    Na, S., and Wang, N. (2008) Application of Fluorescence Resonance Energy Transfer and Magnetic Twisting Cytometry to Quantitate Mechano-Chemical Signaling Activities in a Living Cell, Sci Signal 26 , pl1.Google Scholar
  105. 105.
    Na, S., Collin, O., Chowdhury, F., Tay, B., Ouyang, M., Wang, Y., and Wang, N. (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction, Proc. Natl. Acad. Sci. USA. 105, 6626–6631.PubMedCrossRefGoogle Scholar
  106. 106.
    Goldyn, A. M., Rioja, B. A., Spatz, J. P., Ballestrem, C., and Kemkemer, R. (2009) Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding, J.Cell Sci. 122, 3644–3651.PubMedCrossRefGoogle Scholar
  107. 107.
    Brown, C. M., Hebert, B., Kolin, D. L., Zareno, J., Whitmore, L., Horwitz, A. R., and Wiseman, P. W. (2006) Probing the integrin-actin linkage using high-resolution protein velocity mapping, J. Cell Sci. 119, 5204–5214.PubMedCrossRefGoogle Scholar
  108. 108.
    Sabass, B., Gardel, M. L., Waterman, C. M., and Schwarz, U. S. (2008) High resolution traction force microscopy based on experimental and computational advances, Biophys. J. 94, 207–220.PubMedCrossRefGoogle Scholar
  109. 109.
    Gardel, M. L., Sabass, B., Ji, L., Danuser, G., Schwarz, U. S., and Waterman, C. M. (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed, J. Cell Biol. 183, 999–1005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Vascular Biology Research, Division of Molecular and Vascular Medicine, Department of MedicineBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA

Personalised recommendations