Advertisement

Laser Capture Microdissection Applications in Breast Cancer Proteomics

  • René B. H. Braakman
  • Theo M. Luider
  • John W. M. Martens
  • John A. Foekens
  • Arzu Umar
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 755)

Abstract

Breast cancer tissues are characterized by cellular heterogeneity, representing a mixture of, e.g., healthy epithelial ducts, invasive or in situ tumor cells, surrounding stroma, infiltrating immune cells, blood vessels, and capillaries. As a consequence, protein extracts from whole tissue lysates also represent a variety of cell types present in the tissues under examination. This, however, seriously hampers the analysis of tumor cell-specific signals, which is of interest when performing biomarker discovery-type of studies. Therefore, laser capture microdissection is a perfect tool to isolate a relatively pure population of cells of interest, such as tumor cells. In this chapter, we describe the use of the PALM MicroBeam system for laser microdissection and pressure catapulting. Protocols are provided for sectioning, staining, microdissection, sample preparation, and mass spectrometric analysis of snap frozen breast cancer tissue.

Key words

Breast cancer Laser capture microdissection nLC MALDI Mass spectrometry Proteomics Biomarker discovery 

Notes

Acknowledgments

The authors wish to thank Annemieke Timmermans for helpful discussions and technical assistance on tissue sectioning and staining. RBHB and AU are (partly) financially supported through the Center for Translational Molecular Medicine, CTMM BreastCARE project 030–104, and through the Netherlands Genomics Initiative.

References

  1. 1.
    Chen X, E Jorgenson, ST Cheung (2009) New tools for functional genomic analysis. Drug Discov Today 14:754–60CrossRefGoogle Scholar
  2. 2.
    Hood BL, NA Stewart, TP Conrads (2009) Development of high-throughput mass spectrometry-based approaches for cancer biomarker discovery and implementation. Clin Lab Med 29:115–38CrossRefGoogle Scholar
  3. 3.
    Kerschgens J, T Egener-Kuhn, N Mermod (2009) Protein-binding microarrays: probing disease markers at the interface of proteomics and genomics. Trends Mol Med 15:352–8CrossRefGoogle Scholar
  4. 4.
    Emmert-Buck MR, RF Bonner, PD Smith et al (1996) Laser capture microdissection. Science 274:998–1001CrossRefGoogle Scholar
  5. 5.
    Erickson HS, JW Gillespie, MR Emmert-Buck (2008) Tissue microdissection. Methods Mol Biol 424:433–48CrossRefGoogle Scholar
  6. 6.
    Micke P, A Ostman, J Lundeberg et al (2005) Laser-assisted cell microdissection using the PALM system. Methods Mol Biol 293:151–66Google Scholar
  7. 7.
    Hudelist G, CF Singer, KI Pischinger et al (2006) Proteomic analysis in human breast cancer: identification of a characteristic protein expression profile of malignant breast epithelium. Proteomics 6:1989–2002CrossRefGoogle Scholar
  8. 8.
    Neubauer H, SE Clare, R Kurek et al (2006) Breast cancer proteomics by laser capture microdissection, sample pooling, 54-cm IPG IEF, and differential iodine radioisotope detection. Electrophoresis 27:1840–52CrossRefGoogle Scholar
  9. 9.
    Zang L, D Palmer Toy, WS Hancock et al (2004) Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and 16O/18O isotopic labeling. J. Proteome. Res. 3:604–12CrossRefGoogle Scholar
  10. 10.
    Umar A, H Kang, AM Timmermans et al (2009) Identification of a putative protein profile associated with tamoxifen therapy resistance in breast cancer. Mol Cell Proteomics 8:1278–94CrossRefGoogle Scholar
  11. 11.
    Umar A, TM Luider, JA Foekens et al (2007) NanoLC-FT-ICR MS improves proteome coverage attainable for approximately 3000 laser-microdissected breast carcinoma cells. Proteomics 7:323–9CrossRefGoogle Scholar
  12. 12.
    Umar A, JC Dalebout, AM Timmermans et al (2005) Method optimisation for peptide profiling of microdissected breast carcinoma tissue by matrix-assisted laser desorption/ionisation-time of flight and matrix-assisted laser desorption/ionisation-time of flight/time of flight-mass spectrometry. Proteomics 5:2680–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • René B. H. Braakman
    • 2
  • Theo M. Luider
    • 3
  • John W. M. Martens
    • 2
  • John A. Foekens
    • 2
  • Arzu Umar
    • 1
    • 2
  1. 1.Netherlands Proteomics CenterErasmus MC RotterdamRotterdamThe Netherlands
  2. 2.Department of Medical Oncology, Center for Translational Molecular Medicine, and Cancer Genomics CentreErasmus MC RotterdamRotterdamThe Netherlands
  3. 3.Department of Neurology and Laboratory of Clinical and Cancer ProteomicsErasmus MC RotterdamRotterdamThe Netherlands

Personalised recommendations