Assaying Transcription Factor Stability

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 754)

Abstract

Similar to the activities of transcription factors (TFs) in other eukaryotes, activities of many plant TFs are determined via regulated proteolysis by the ubiquitin/26S proteasome system. Thus, to fully understand the function of a TF, it is important to determine the fate of the active TF protein and unravel the environmental and intrinsic signals that control its total cellular level. Here we describe how to determine whether a TF of interest is targeted to the 26S proteasome for degradation. The given method combines analyses of the effects of translational inhibition and the inhibition of proteasome activity. An important requirement for these experiments is to monitor in parallel the effects of translational and proteasomal inhibition on the abundance of the TF and (1) on ubiquitin, which becomes rapidly depleted upon translational inhibition (2), on polyubiquitinated proteins, which accumulate upon successful inhibition of the 26S proteasome, and (3) on glutamine synthase, a very stable protein that is used as a general metabolic control. The method described here can be used to test TF stability under a variety of conditions and in different genetic backgrounds.

Key words

Immunoblot analyses cycloheximide proteasome inhibitor transcription factor stability glutamine synthase ubiquitin 

Notes

Acknowledgments

This work was supported by the KTRD Center in Lexington, KY, and by grants from NSF (# 0919991) and from the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (#2005-35304-16043).

References

  1. 1.
    Greenbaum, D., Colangelo, C., Williams, K., and Gerstein, M. (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117.PubMedCrossRefGoogle Scholar
  2. 2.
    Kislinger, T., Cox, B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., Scott, M. S., Gramolini, A. O., Morris, Q., Hallett, M. T., Rossant, J., Hughes, T. R., Frey, B., and Emili, A. (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173–186.PubMedCrossRefGoogle Scholar
  3. 3.
    Fu, N., Drinnenberg, I., Kelso, J., Wu, J.-R., Pääbo, S., Zeng, R., and Khaitovich, P. (2007) Comparison of protein and mRNA expression evolution in humans and chimpanzees. PLoS One 2, e216.PubMedCrossRefGoogle Scholar
  4. 4.
    Nie, L., Wu, G., Culley, D. E., Scholten, J. C., and Zhang, W. (2007) Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit. Rev. Biotechnol. 27, 63–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Gagne, J. M., Smalle, J., Gingerich, D. J., Walker, J. M., Yoo, S. D., Yanagisawa, S., and Vierstra, R. D. (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. USA 101, 6803–6808.PubMedCrossRefGoogle Scholar
  6. 6.
    Guo, H., and Ecker, J. R. (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115, 667–677.PubMedCrossRefGoogle Scholar
  7. 7.
    Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., and Genschik, P. (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115, 679–689.PubMedCrossRefGoogle Scholar
  8. 8.
    Schwager, K. M., Calderon-Villalobos, L. I., Dohmann, E. M., Willige, B. C., Knierer, S., Nill, C., and Schwechheimer, C. (2007) Characterization of the VIER F-BOX PROTEINE genes from Arabidopsis reveals their importance for plant growth and development. Plant Cell 19, 1163–1178.PubMedCrossRefGoogle Scholar
  9. 9.
    Osterlund, M. T., Hardtke, C. S., Wei, N., and Deng, X. W. (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466.PubMedCrossRefGoogle Scholar
  10. 10.
    Gray, W. M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276.PubMedCrossRefGoogle Scholar
  11. 11.
    Kepinski, S., and Leyser, O. (2004) Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl. Acad. Sci. USA 101, 12381–12386.PubMedCrossRefGoogle Scholar
  12. 12.
    Yang, X., Lee, S., So, J. H., Dharmasiri, S., Dharmasiri, N., Ge, L., Jensen, C., Hangarter, R., Hobbie, L., and Estelle, M. (2004) The IAA1 protein is encoded by AXR5 and is a substrate of SCFTIR1. Plant J. 40, 772–782.PubMedCrossRefGoogle Scholar
  13. 13.
    Zenser, N., Ellsmore, A., Leasure, C., and Callis, J. (2001) Auxin modulates the degradation rate of Aux/IAA proteins. Proc. Natl. Acad. Sci. USA 98, 11795–11800.PubMedCrossRefGoogle Scholar
  14. 14.
    Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F. M., Ponce, M. R., Micol, J. L., and Solano, R. (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671.PubMedCrossRefGoogle Scholar
  15. 15.
    He, J. X., Gendron, J. M., Yang, Y., Li, J., and Wang, Z. Y. (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 10185–10190.PubMedCrossRefGoogle Scholar
  16. 16.
    Borissenko, L., and Groll, M. (2007) Diversity of proteasomal missions: fine tuning of the immune response. Biol. Chem. 388, 947–955.PubMedCrossRefGoogle Scholar
  17. 17.
    DeMartino, G. N., and Gillette, T. G. (2007) Proteasomes: machines for all reasons. Cell 129, 659–662.PubMedCrossRefGoogle Scholar
  18. 18.
    Kurepa, J., Toh-e, A., and Smalle, J. A. (2008) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J. 53, 102–114.PubMedCrossRefGoogle Scholar
  19. 19.
    Hanna, J., and Finley, D. (2007) A proteasome for all occasions. FEBS Lett. 581, 2854–2861.PubMedCrossRefGoogle Scholar
  20. 20.
    Smalle, J. A., and Vierstra, R. D. (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55, 555–590.PubMedCrossRefGoogle Scholar
  21. 21.
    Dreher, K., and Callis, J. (2007) Ubiquitin, hormones and biotic stress in plants. Ann. Bot. (Lond.) 99, 787–822.CrossRefGoogle Scholar
  22. 22.
    Crews, C. M. (2003) Feeding the machine: mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins. Curr. Opin. Chem. Biol. 7, 534–539.PubMedCrossRefGoogle Scholar
  23. 23.
    Pickart, C. M. (2000) Ubiquitin in chains. Trends Biochem. Sci. 25, 544–548.PubMedCrossRefGoogle Scholar
  24. 24.
    Thrower, J. S., Hoffman, L., Rechsteiner, M., and Pickart, C. M. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102.PubMedCrossRefGoogle Scholar
  25. 25.
    Kurepa, J., Karangwa, C., Duke, L. S., and Smalle, J. A. (2010) Arabidopsis sensitivity to protein synthesis inhibitors depends on 26S proteasome activity. Plant Cell Rep. 29, 249–259.PubMedCrossRefGoogle Scholar
  26. 26.
    Kurepa, J., and Smalle, J. A. (2008) Structure, function and regulation of plant proteasomes. Biochimie 90, 324–335.PubMedCrossRefGoogle Scholar
  27. 27.
    Swerdlow, P. S., Finley, D., and Varshavsky, A. (1986) Enhancement of immunoblot sensitivity by heating of hydrated filters. Anal. Biochem. 156, 147–153.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Plant and Soil SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations