Gel-Free Proteomics pp 183-213

Part of the Methods in Molecular Biology book series (MIMB, volume 753) | Cite as

Analytical Strategies in Mass Spectrometry-Based Phosphoproteomics

Protocol

Abstract

Phosphoproteomics, the systematic study of protein phosphorylation events and cell signaling networks in cells and tissues, is a rapidly evolving branch of functional proteomics. Current phosphoproteomics research provides a large toolbox of strategies and protocols that may assist researchers to reveal key regulatory events and phosphorylation-mediated processes in the cell and in whole organisms. We present an overview of sensitive and robust analytical methods for phosphopeptide analysis, including calcium phosphate precipitation and affinity enrichment methods such as IMAC and TiO2. We then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large-scale experiments for studies of phosphorylation-mediated protein regulation.

Key words

Protein phosphorylation cell signaling IMAC TiO2 tandem mass spectrometry, phosphopeptide sequencing 

References

  1. 1.
    Fischer, E. H., and Krebs, E. G. (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem 216, 121–32.PubMedGoogle Scholar
  2. 2.
    Krebs, E. G., and Fischer, E. H. (1955) Phosphorylase activity of skeletal muscle extracts. J Biol Chem 216, 113–20.PubMedGoogle Scholar
  3. 3.
    Larsen, M. R., Trelle, M. B., Thingholm, T. E., and Jensen, O. N. (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40, 790–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Preisinger, C., von Kriegsheim, A., Matallanas, D., and Kolch, W. (2008) Proteomics and phosphoproteomics for the mapping of cellular signalling networks. Proteomics 8, 4402–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Thingholm, T. E., Jensen, O. N., and Larsen, M. R. (2009) Analytical strategies for phosphoproteomics. Proteomics 9, 1451–68.PubMedCrossRefGoogle Scholar
  6. 6.
    Hochuli, E., Bannwarth, W., Doebeli, H., Gentz, R., Stueber, D. (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate affinity chromatography. Bio/Technology 6, 1321–5.CrossRefGoogle Scholar
  7. 7.
    Hochuli, E., Dobeli, H., and Schacher, A. (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411, 177–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Andersson, L., and Porath, J. (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154, 250–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Feng, S., Ye, M., Zhou, H., Jiang, X., Jiang, X., Zou, H., and Gong, B. (2007) Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics 6, 1656–65.PubMedCrossRefGoogle Scholar
  11. 11.
    Hollender, D., Karoly-Lakatos, A., Forgo, P., Kortvelyesi, T., Dombi, G., Majer, Z., Hollosi, M., Kiss, T., and Odani, A. (2006) Al(III)-binding ability of an octapeptide and its phosphorylated derivative. J Inorg Biochem 100, 351–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Posewitz, M. C., and Tempst, P. (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71, 2883–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Stensballe, A., Andersen, S., and Jensen, O. N. (2001) Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1, 207–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Machida, M., Kosako, H., Shirakabe, K., Kobayashi, M., Ushiyama, M., Inagawa, J., Hirano, J., Nakano, T., Bando, Y., Nishida, E., and Hattori, S. (2007) Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. FEBS J 274, 1576–87.PubMedCrossRefGoogle Scholar
  15. 15.
    Seeley, E. H., Riggs, L. D., and Regnier, F. E. (2005) Reduction of non-specific binding in Ga(III) immobilized metal affinity chromatography for phosphopeptides by using endoproteinase glu-C as the digestive enzyme. J Chromatogr B Analyt Technol Biomed Life Sci 817, 81–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Barnouin, K. N., Hart, S. R., Thompson, A. J., Okuyama, M., Waterfield, M., and Cramer, R. (2005) Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol. Proteomics 5, 4376–88.PubMedCrossRefGoogle Scholar
  17. 17.
    Imanishi, S. Y., Kochin, V., and Eriksson, J. E. (2007) Optimization of phosphopeptide elution conditions in immobilized Fe(III) affinity chromatography. Proteomics 7, 174–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Kokubu, M., Ishihama, Y., Sato, T., Nagasu, T., and Oda, Y. (2005) Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal Chem 77, 5144–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Brill, L. M., Salomon, A. R., Ficarro, S. B., Mukherji, M., Stettler-Gill, M., and Peters, E. C. (2004) Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Anal Chem 76, 2763–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20, 301–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4, 873–86.PubMedCrossRefGoogle Scholar
  22. 22.
    Speicher, K., Kolbas, O., Harper, S., and Speicher, D. (2000) Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech 11, 74–86.PubMedGoogle Scholar
  23. 23.
    Ye, J., Zhang, X., Young, C., Zhao, X., Hao, Q., Cheng, L., and Jensen, O. N. (2010) J Proteome Res 9(7), 3561–73.Google Scholar
  24. 24.
    Ficarro, S. B., Parikh, J. R., Blank, N. C., and Marto, J. A. (2008) Niobium(V) oxide (Nb2O5): application to phosphoproteomics. Anal Chem 80, 4606–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Leitner, A., Sturm, M., Smatt, J. H., Jarn, M., Linden, M., Mechtler, K., and Lindner, W. (2009) Optimizing the performance of tin dioxide microspheres for phosphopeptide enrichment. Anal Chim Acta 638, 51–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Pinkse, M. W., Uitto, P. M., Hilhorst, M. J., Ooms, B., and Heck, A. J. (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76, 3935–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Sano, A., and Nakamura, H. (2007) Evaluation of titanium and titanium oxides as chemo-affinity sorbents for the selective enrichment of organic phosphates. Anal Sci 23, 1285–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Wolschin, F., Wienkoop, S., and Weckwerth, W. (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 5, 4389–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou, H., Tian, R., Ye, M., Xu, S., Feng, S., Pan, C., Jiang, X., Li, X., and Zou, H. (2007) Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Electrophoresis 28, 2201–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Ikeguchi, Y., and Nakamua, H. (1997) Determination of organic phosphates by column-switching high performance anion-exchange chromatography using on-line preconcentration on titania. Anal Sci 13, 479–483.CrossRefGoogle Scholar
  31. 31.
    Cantin, G. T., Shock, T. R., Park, S. K., Madhani, H. D., and Yates, J. R., 3rd. (2007) Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Anal Chem 79, 4666–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Yu, L. R., Zhu, Z., Chan, K. C., Issaq, H. J., Dimitrov, D. S., and Veenstra, T. D. (2007) Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. J Proteome Res 6, 4150–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Simon, E. S., Young, M., Chan, A., Bao, Z. Q., and Andrews, P. C. (2008) Improved enrichment strategies for phosphorylated peptides on titanium dioxide using methyl esterification and pH gradient elution. Anal Biochem 377, 234–42.PubMedCrossRefGoogle Scholar
  34. 34.
    Kweon, H. K., and Hakansson, K. (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 78, 1743–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Sugiyama, N., Masuda, T., Shinoda, K., Nakamura, A., Tomita, M., and Ishihama, Y. (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6, 1103–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Kyono, Y., Sugiyama, N., Imami, K., Tomita, M., and Ishihama, Y. (2008) Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res 7, 4585–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K., and Ishihama, Y. (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4, 193.PubMedCrossRefGoogle Scholar
  38. 38.
    Li, Y., Leng, T., Lin, H., Deng, C., Xu, X., Yao, N., Yang, P., and Zhang, X. (2007) Preparation of Fe3O4@ZrO2core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res 6, 4498–510.PubMedCrossRefGoogle Scholar
  39. 39.
    Qi, D., Lu, J., Deng, C., and Zhang, X. (2009) Development of core-shell structure Fe3O4@Ta2O5microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. J Chromatogr A 1216, 5533–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Jensen, S. S., and Larsen, M. R. (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21, 3635–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Thingholm, T. E., Jorgensen, T. J., Jensen, O. N., and Larsen, M. R. (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1, 1929–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Gronborg, M., Kristiansen, T. Z., Stensballe, A., Andersen, J. S., Ohara, O., Mann, M., Jensen, O. N., and Pandey, A. (2002) A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics 1, 517–27.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaufmann, H., Bailey, J. E., and Fussenegger, M. (2001) Use of antibodies for detection of phosphorylated proteins separated by two-dimensional gel electrophoresis. Proteomics 1, 194–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Pandey, A., Fernandez, M. M., Steen, H., Blagoev, B., Nielsen, M. M., Roche, S., Mann, M., and Lodish, H. F. (2000) Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. J Biol Chem 275, 38633–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Steen, H., Kuster, B., Fernandez, M., Pandey, A., and Mann, M. (2002) Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J Biol Chem 277, 1031–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Collins, M. O., Yu, L., and Choudhary, J. S. (2007) Analysis of protein phosphorylation on a proteome-scale. Proteomics 7, 2751–68.PubMedCrossRefGoogle Scholar
  47. 47.
    Rush, J., Moritz, A., Lee, K. A., Guo, A., Goss, V. L., Spek, E. J., Zhang, H., Zha, X. M., Polakiewicz, R. D., and Comb, M. J. (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23, 94–101.PubMedCrossRefGoogle Scholar
  48. 48.
    Sevecka, M., and MacBeath, G. (2006) State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat Methods 3, 825–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Ficarro, S., Chertihin, O., Westbrook, V. A., White, F., Jayes, F., Kalab, P., Marto, J. A., Shabanowitz, J., Herr, J. C., Hunt, D. F., and Visconti, P. E. (2003) Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 278, 11579–89.PubMedCrossRefGoogle Scholar
  50. 50.
    Zheng, H., Hu, P., Quinn, D. F., and Wang, Y. K. (2005) Phosphotyrosine proteomic study of interferon alpha signaling pathway using a combination of immunoprecipitation and immobilized metal affinity chromatography. Mol Cell Proteomics 4, 721–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Villen, J., Beausoleil, S. A., Gerber, S. A., and Gygi, S. P. (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA 104, 1488–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang, Y., Wolf-Yadlin, A., Ross, P. L., Pappin, D. J., Rush, J., Lauffenburger, D. A., and White, F. M. (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4, 1240–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang, Y., Wolf-Yadlin, A., and White, F. M. (2007) Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks. Methods Mol Biol 359, 203–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Peck, S. C., Nuhse, T. S., Hess, D., Iglesias, A., Meins, F., and Boller, T. (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13, 1467–75.PubMedCrossRefGoogle Scholar
  55. 55.
    Reynolds, E. C., Riley, P. F., and Adamson, N. J. (1994) A selective precipitation purification procedure for multiple phosphoseryl-containing peptides and methods for their identification. Anal Biochem 217, 277–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang, X., Ye, J., Jensen, O. N., and Roepstorff, P. (2007) Highly efficient phosphopeptide enrichment by calcium phosphate precipitation combined with subsequent IMAC enrichment. Mol Cell Proteomics 6, 2032–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Kametani, F., Nonaka, T., Suzuki, T., Arai, T., Dohmae, N., Akiyama, H., and Hasegawa, M. (2009) Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem Biophys Res Commun 382, 405–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Xia, Q., Cheng, D., Duong, D. M., Gearing, M., Lah, J. J., Levey, A. I., and Peng, J. (2008) Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J Proteome Res 7, 2845–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Ruse, C. I., McClatchy, D. B., Lu, B., Cociorva, D., Motoyama, A., Park, S. K., and Yates, J. R., 3rd. (2008) Motif-specific sampling of phosphoproteomes. J Proteome Res 7, 2140–50.PubMedCrossRefGoogle Scholar
  60. 60.
    Bodenmiller, B., Mueller, L. N., Mueller, M., Domon, B., and Aebersold, R. (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4, 231–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Thingholm, T. E., Jensen, O. N., Robinson, P. J., and Larsen, M. R. (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7, 661–71.PubMedGoogle Scholar
  62. 62.
    Nuhse, T. S., Stensballe, A., Jensen, O. N., and Peck, S. C. (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2, 1234–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Han, G., Ye, M., Zhou, H., Jiang, X., Feng, S., Jiang, X., Tian, R., Wan, D., Zou, H., and Gu, J. (2008) Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics 8, 1346–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villen, J., Li, J., Cohn, M. A., Cantley, L. C., and Gygi, S. P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101, 12130–5.PubMedCrossRefGoogle Scholar
  65. 65.
    Villen, J., and Gygi, S. P. (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3, 1630–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P., Faergeman, N. J., Mann, M., and Jensen, O. N. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4, 310–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Trinidad, J. C., Specht, C. G., Thalhammer, A., Schoepfer, R., and Burlingame, A. L. (2006) Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 5, 914–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–48.PubMedCrossRefGoogle Scholar
  69. 69.
    Wu, J., Shakey, Q., Liu, W., Schuller, A., and Follettie, M. T. (2007) Global profiling of phosphopeptides by titania affinity enrichment. J Proteome Res 6, 4684–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Pinkse, M. W., Mohammed, S., Gouw, J. W., van Breukelen, B., Vos, H. R., and Heck, A. J. (2008) Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. J Proteome Res 7, 687–97.PubMedCrossRefGoogle Scholar
  71. 71.
    Dai, J., Jin, W. H., Sheng, Q. H., Shieh, C. H., Wu, J. R., and Zeng, R. (2007) Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry. J Proteome Res 6, 250–62.PubMedCrossRefGoogle Scholar
  72. 72.
    Dai, J., Wang, L. S., Wu, Y. B., Sheng, Q. H., Wu, J. R., Shieh, C. H., and Zeng, R. (2009) Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry. J Proteome Res 8, 133–41.PubMedCrossRefGoogle Scholar
  73. 73.
    Nashabeh, W., and el Rassi, Z. (1991) Capillary zone electrophoresis of alpha 1-acid glycoprotein fragments from trypsin and endoglycosidase digestions. J Chromatogr 536, 31–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Boersema, P. J., Divecha, N., Heck, A. J., and Mohammed, S. (2007) Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J Proteome Res 6, 937–46.PubMedCrossRefGoogle Scholar
  75. 75.
    McNulty, D. E., and Annan, R. S. (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7, 971–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Alpert, A. J. (2008) Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 80, 62–76.PubMedCrossRefGoogle Scholar
  77. 77.
    Gan, C. S., Guo, T., Zhang, H., Lim, S. K., and Sze, S. K. (2008) A comparative study of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) versus SCX-IMAC-based methods for phosphopeptide isolation/enrichment. J Proteome Res 7, 4869–77.PubMedCrossRefGoogle Scholar
  78. 78.
    Boersema, P. J., Mohammed, S., and Heck, A. J. (2009) Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom 44, 861–78.PubMedCrossRefGoogle Scholar
  79. 79.
    Roepstorff, P., and Fohlman, J. (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11, 601.PubMedCrossRefGoogle Scholar
  80. 80.
    Flora, J. W., and Muddiman, D. C. (2004) Determination of the relative energies of activation for the dissociation of aromatic versus aliphatic phosphopeptides by ESI-FTICR-MS and IRMPD. J Am Soc Mass Spectrom 15, 121–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Reinders, J., Lewandrowski, U., Moebius, J., Wagner, Y., and Sickmann, A. (2004) Challenges in mass spectrometry-based proteomics. Proteomics 4, 3686–703.PubMedCrossRefGoogle Scholar
  82. 82.
    Rinalducci, S., Larsen, M. R., Mohammed, S., and Zolla, L. (2006) Novel protein phosphorylation site identification in spinach stroma membranes by titanium dioxide microcolumns and tandem mass spectrometry. J Proteome Res 5, 973–82.PubMedCrossRefGoogle Scholar
  83. 83.
    Nichols, A. M., and White, F. M. (2009) Manual validation of peptide sequence and sites of tyrosine phosphorylation from MS/MS spectra. Methods Mol Biol 492, 143–60.PubMedCrossRefGoogle Scholar
  84. 84.
    Steen, H., Kuster, B., and Mann, M. (2001) Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom 36, 782–90.PubMedCrossRefGoogle Scholar
  85. 85.
    Villen, J., Beausoleil, S. A., and Gygi, S. P. (2008) Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis. Proteomics 8, 4444–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Benschop, J. J., Mohammed, S., O’Flaherty, M., Heck, A. J., Slijper, M., and Menke, F. L. (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6, 1198–214.PubMedCrossRefGoogle Scholar
  87. 87.
    Lemeer, S., Pinkse, M. W., Mohammed, S., van Breukelen, B., den Hertog, J., Slijper, M., and Heck, A. J. (2008) Online automated in vivo zebrafish phosphoproteomics: from large-scale analysis down to a single embryo. J Proteome Res 7, 1555–64.PubMedCrossRefGoogle Scholar
  88. 88.
    Ulintz, P. J., Yocum, A. K., Bodenmiller, B., Aebersold, R., Andrews, P. C., and Nesvizhskii, A. I. (2009) Comparison of MS(2)-only, MSA, and MS(2)/MS(3) methodologies for phosphopeptide identification. J Proteome Res 8, 887–99.PubMedCrossRefGoogle Scholar
  89. 89.
    Schroeder, M. J., Shabanowitz, J., Schwartz, J. C., Hunt, D. F., and Coon, J. J. (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76, 3590–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Palumbo, A. M., and Reid, G. E. (2008) Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Anal Chem 80, 9735–47.PubMedCrossRefGoogle Scholar
  91. 91.
    Chi, A., Huttenhower, C., Geer, L. Y., Coon, J. J., Syka, J. E., Bai, D. L., Shabanowitz, J., Burke, D. J., Troyanskaya, O. G., and Hunt, D. F. (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiaeby electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 104, 2193–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Hogan, J. M., Pitteri, S. J., and McLuckey, S. A. (2003) Phosphorylation site identification via ion trap tandem mass spectrometry of whole protein and peptide ions: bovine alpha-crystallin A chain. Anal Chem 75, 6509–16.PubMedCrossRefGoogle Scholar
  93. 93.
    Zubarev, R. A., Kelleher, N. L., and McLafferty, F. W. (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120, 3265–3266.CrossRefGoogle Scholar
  94. 94.
    Hakansson, K., Cooper, H. J., Emmett, M. R., Costello, C. E., Marshall, A. G., and Nilsson, C. L. (2001) Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. Anal Chem 73, 4530–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Mirgorodskaya, E., Roepstorff, P., and Zubarev, R. A. (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal Chem 71, 4431–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Shi, S. D., Hemling, M. E., Carr, S. A., Horn, D. M., Lindh, I., and McLafferty, F. W. (2001) Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal Chem 73, 19–22.PubMedCrossRefGoogle Scholar
  97. 97.
    Stensballe, A., Jensen, O. N., Olsen, J. V., Haselmann, K. F., and Zubarev, R. A. (2000) Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun Mass Spectrom 14, 1793–800.PubMedCrossRefGoogle Scholar
  98. 98.
    Voinov, V. G., Deinzer, M. L., and Barofsky, D. F. (2009) Radio-frequency-free cell for electron capture dissociation in tandem mass spectrometry. Anal Chem 81, 1238–43.PubMedCrossRefGoogle Scholar
  99. 99.
    Reid, G. E., Wells, J. M., Badman, E. R., and McLuckey, S. A. (2003) Performance of a quadrupole ion trap mass spectrometer adapted for ion/ion reaction studies. Int J Mass Spectrom 222, 243–258.CrossRefGoogle Scholar
  100. 100.
    Good, D. M., Wirtala, M., McAlister, G. C., and Coon, J. J. (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6, 1942–51.PubMedCrossRefGoogle Scholar
  101. 101.
    Xia, Y., Chrisman, P. A., Erickson, D. E., Liu, J., Liang, X., Londry, F. A., Yang, M. J., and McLuckey, S. A. (2006) Implementation of ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer. Anal Chem 78, 4146–54.PubMedCrossRefGoogle Scholar
  102. 102.
    Kleinnijenhuis, A. J., Kjeldsen, F., Kallipolitis, B., Haselmann, K. F., and Jensen, O. N. (2007) Analysis of histidine phosphorylation using tandem MS and ion-electron reactions. Anal Chem 79, 7450–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Molina, H., Horn, D. M., Tang, N., Mathivanan, S., and Pandey, A. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104, 2199–204.PubMedCrossRefGoogle Scholar
  104. 104.
    Swaney, D. L., McAlister, G. C., and Coon, J. J. (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5, 959–64.PubMedCrossRefGoogle Scholar
  105. 105.
    Lu, H., Zong, C., Wang, Y., Young, G. W., Deng, N., Souda, P., Li, X., Whitelegge, J., Drews, O., Yang, P. Y., and Ping, P. (2008) Revealing the dynamics of the 20 S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach. Mol Cell Proteomics 7, 2073–89.PubMedCrossRefGoogle Scholar
  106. 106.
    Hennrich, M. L., Boersema, P. J., van den Toorn, H., Mischerikow, N., Heck, A. J., and Mohammed, S. (2009) Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation. Anal Chem 81, 7814–22.PubMedCrossRefGoogle Scholar
  107. 107.
    Taouatas, N., Altelaar, A. F., Drugan, M. M., Helbig, A. O., Mohammed, S., and Heck, A. J. (2009) Strong cation exchange-based fractionation of Lys-N-generated peptides facilitates the targeted analysis of post-translational modifications. Mol Cell Proteomics 8, 190–200.PubMedCrossRefGoogle Scholar
  108. 108.
    Taouatas, N., Drugan, M. M., Heck, A. J., and Mohammed, S. (2008) Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nat Methods 5, 405–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Kjeldsen, F., Giessing, A. M., Ingrell, C. R., and Jensen, O. N. (2007) Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry. Anal Chem 79, 9243–52.PubMedCrossRefGoogle Scholar
  110. 110.
    Swaney, D. L., McAlister, G. C., Wirtala, M., Schwartz, J. C., Syka, J. E., and Coon, J. J. (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79, 477–85.PubMedCrossRefGoogle Scholar
  111. 111.
    Wu, S. L., Huhmer, A. F., Hao, Z., and Karger, B. L. (2007) On-line LC-MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J Proteome Res 6, 4230–44.PubMedCrossRefGoogle Scholar
  112. 112.
    Carr, S. A., Huddleston, M. J., and Annan, R. S. (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem 239, 180–92.PubMedCrossRefGoogle Scholar
  113. 113.
    Edelson-Averbukh, M., Pipkorn, R., and Lehmann, W. D. (2006) Phosphate group-driven fragmentation of multiply charged phosphopeptide anions. Improved recognition of peptides phosphorylated at serine, threonine, or tyrosine by negative ion electrospray tandem mass spectrometry. Anal Chem 78, 1249–56.PubMedCrossRefGoogle Scholar
  114. 114.
    Huddleston, M. J., Annan, R. S., Bean, M. F., and Carr, S. A. (1993) Selective detection of phosphopeptides in complex-mixtures by electrospray liquid-chromatography mass-spectrometry. J Am Soc Mass Spectrom 4, 710–717.CrossRefGoogle Scholar
  115. 115.
    Olsen, J. V., Macek, B., Lange, O., Makarov, A., Horning, S., and Mann, M. (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4, 709–12.PubMedCrossRefGoogle Scholar
  116. 116.
    Blackburn, K., and Goshe, M. B. (2009) Challenges and strategies for targeted phosphorylation site identification and quantification using mass spectrometry analysis. Brief Funct Genomic Proteomic 8, 90–103.PubMedCrossRefGoogle Scholar
  117. 117.
    Unwin, R. D., Griffiths, J. R., Leverentz, M. K., Grallert, A., Hagan, I. M., and Whetton, A. D. (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4, 1134–44.PubMedCrossRefGoogle Scholar
  118. 118.
    Yocum, A. K., and Chinnaiyan, A. M. (2009) Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 8, 145–57.PubMedCrossRefGoogle Scholar
  119. 119.
    Cirulli, C., Chiappetta, G., Marino, G., Mauri, P., and Amoresano, A. (2008) Identification of free phosphopeptides in different biological fluids by a mass spectrometry approach. Anal Bioanal Chem 392, 147–59.PubMedCrossRefGoogle Scholar
  120. 120.
    Cox, D. M., Zhong, F., Du, M., Duchoslav, E., Sakuma, T., and McDermott, J. C. (2005) Multiple reaction monitoring as a method for identifying protein posttranslational modifications. J Biomol Tech 16, 83–90.PubMedGoogle Scholar
  121. 121.
    Glinski, M., and Weckwerth, W. (2005) Differential multisite phosphorylation of the trehalose-6-phosphate synthase gene family in Arabidopsis thaliana: a mass spectrometry-based process for multiparallel peptide library phosphorylation analysis. Mol Cell Proteomics 4, 1614–25.PubMedCrossRefGoogle Scholar
  122. 122.
    Johnson, R. P., El-Yazbi, A. F., Hughes, M. F., Schriemer, D. C., Walsh, E. J., Walsh, M. P., and Cole, W. C. (2009) Identification and functional characterization of protein kinase A-catalyzed phosphorylation of potassium channel Kv1.2 at serine 449. J Biol Chem 284, 16562–74.PubMedCrossRefGoogle Scholar
  123. 123.
    Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D. A., and White, F. M. (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci USA 104, 5860–5.PubMedCrossRefGoogle Scholar
  124. 124.
    Zappacosta, F., Collingwood, T. S., Huddleston, M. J., and Annan, R. S. (2006) A quantitative results-driven approach to analyzing multisite protein phosphorylation: the phosphate-dependent phosphorylation profile of the transcription factor Pho4. Mol Cell Proteomics 5, 2019–30.PubMedCrossRefGoogle Scholar
  125. 125.
    Lysenko, A., Hindle, M. M., Taubert, J., Saqi, M., and Rawlings, C. J. (2009) Data integration for plant genomics–exemplars from the integration of Arabidopsis thaliana databases. Brief Bioinform 10, 676–93.PubMedCrossRefGoogle Scholar
  126. 126.
    Lucker, J., Laszczak, M., Smith, D., and Lund, S. T. (2009) Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon) berries at ripening initiation. BMC Genomics 10, 50.PubMedCrossRefGoogle Scholar
  127. 127.
    Ishii, A., Dutta, R., Wark, G. M., Hwang, S. I., Han, D. K., Trapp, B. D., Pfeiffer, S. E., and Bansal, R. (2009) Human myelin proteome and comparative analysis with mouse myelin. Proc Natl Acad Sci USA 106, 14605–10.PubMedCrossRefGoogle Scholar
  128. 128.
    Vissers, J. P., Pons, S., Hulin, A., Tissier, R., Berdeaux, A., Connolly, J. B., Langridge, J. I., Geromanos, S. J., and Ghaleh, B. (2009) The use of proteome similarity for the qualitative and quantitative profiling of reperfused myocardium. J Chromatogr B Analyt Technol Biomed Life Sci 877, 1317–26.PubMedCrossRefGoogle Scholar
  129. 129.
    Chen, Y., Zhang, J., Xing, G., and Zhao, Y. (2009) Mascot-derived false positive peptide identifications revealed by manual analysis of tandem mass spectra. J Proteome Res 8, 3141–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Alves, G., Wu, W. W., Wang, G., Shen, R. F., and Yu, Y. K. (2008) Enhancing peptide identification confidence by combining search methods. J Proteome Res 7, 3102–13.PubMedCrossRefGoogle Scholar
  131. 131.
    Xu, H., Wang, L., Sallans, L., and Freitas, M. A. (2009) A hierarchical MS2/MS3 database search algorithm for automated analysis of phosphopeptide tandem mass spectra. Proteomics 9, 1763–70.PubMedCrossRefGoogle Scholar
  132. 132.
    Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J., and Gygi, S. P. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285–92.PubMedCrossRefGoogle Scholar
  133. 133.
    Mortensen, P., Gouw, J. W., Olsen, J. V., Ong, S. E., Rigbolt, K. T., Bunkenborg, J., Cox, J., Foster, L. J., Heck, A. J., Blagoev, B., Andersen, J. S., and Mann, M. (2010) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9, 393–403.Google Scholar
  134. 134.
    Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25, 25–9.PubMedCrossRefGoogle Scholar
  135. 135.
    KEGG Pathway Database(http://www.genome.jp/kegg/pathway.html), Kanehisha Laboratories.
  136. 136.
    Pfam(http://pfam.sanger.ac.uk/), The Welcome Trust Sanger Institute.
  137. 137.
    Huang, C. Y., Chang, C. P., Huang, C. L., and Ferrell, J. E., Jr. (1999) M phase phosphorylation of cytoplasmic dynein intermediate chain and p150(Glued). J Biol Chem 274, 14262–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Morales, M. A., Watanabe, R., Laurent, C., Lenormand, P., Rousselle, J. C., Namane, A., and Spath, G. F. (2008) Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages. Proteomics 8, 350–63.PubMedCrossRefGoogle Scholar
  139. 139.
    El Benna, J., Han, J., Park, J. W., Schmid, E., Ulevitch, R. J., and Babior, B. M. (1996) Activation of p38 in stimulated human neutrophils: phosphorylation of the oxidase component p47phox by p38 and ERK but not by JNK. Arch Biochem Biophys 334, 395–400.PubMedCrossRefGoogle Scholar
  140. 140.
    Lee, H. J., Na, K., Kwon, M. S., Kim, H., Kim, K. S., and Paik, Y. K. (2009) Quantitative analysis of phosphopeptides in search of the disease biomarker from the hepatocellular carcinoma specimen. Proteomics 9, 3395–408.PubMedCrossRefGoogle Scholar
  141. 141.
    Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., and Kuster, B. (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389, 1017–31.PubMedCrossRefGoogle Scholar
  142. 142.
    Tedford, N. C., Hall, A. B., Graham, J. R., Murphy, C. E., Gordon, N. F., and Radding, J. A. (2009) Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics. Proteomics 9, 1469–87.PubMedCrossRefGoogle Scholar
  143. 143.
    Ono, M., Shitashige, M., Honda, K., Isobe, T., Kuwabara, H., Matsuzuki, H., Hirohashi, S., and Yamada, T. (2006) Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol Cell Proteomics 5, 1338–47.PubMedCrossRefGoogle Scholar
  144. 144.
    Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12, 1231–45.PubMedCrossRefGoogle Scholar
  145. 145.
    Zhu, W., Smith, J. W., and Huang, C. M. (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010, 840518, 6. doi:10.1155/2010/840518.Google Scholar
  146. 146.
    Asara, J. M., Christofk, H. R., Freimark, L. M., and Cantley, L. C. (2008) A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 8, 994–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Niittyla, T., Fuglsang, A. T., Palmgren, M. G., Frommer, W. B., and Schulze, W. X. (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 6, 1711–26.PubMedCrossRefGoogle Scholar
  148. 148.
    Hoffert, J. D., Pisitkun, T., Wang, G., Shen, R. F., and Knepper, M. A. (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103, 7159–64.PubMedCrossRefGoogle Scholar
  149. 149.
    Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–86.PubMedCrossRefGoogle Scholar
  150. 150.
    Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154–69.PubMedCrossRefGoogle Scholar
  151. 151.
    Bantscheff, M., Eberhard, D., Abraham, Y., Bastuck, S., Boesche, M., Hobson, S., Mathieson, T., Perrin, J., Raida, M., Rau, C., Reader, V., Sweetman, G., Bauer, A., Bouwmeester, T., Hopf, C., Kruse, U., Neubauer, G., Ramsden, N., Rick, J., Kuster, B., and Drewes, G. (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25, 1035–44.PubMedCrossRefGoogle Scholar
  152. 152.
    Boja, E. S., Phillips, D., French, S. A., Harris, R. A., and Balaban, R. S. (2009) Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res 8, 4665–75.PubMedCrossRefGoogle Scholar
  153. 153.
    Sachon, E., Mohammed, S., Bache, N., and Jensen, O. N. (2006) Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: application to proteins isolated by gel electrophoresis. Rapid Commun Mass Spectrom 20, 1127–34.PubMedCrossRefGoogle Scholar
  154. 154.
    Manteca, A., Sanchez, J., Jung, H. R., Schwämmle, V., and Jensen, O. N. (2010) Quantitative proteomic analysis of Streptomyces coelicolordevelopment demonstrates that onset of secondary metabolism coincides with hyphae differentiation. Mol Cell Proteomics 9, 1423–36.Google Scholar
  155. 155.
    Kocher, T., Pichler, P., Schutzbier, M., Stingl, C., Kaul, A., Teucher, N., Hasenfuss, G., Penninger, J. M., and Mechtler, K. (2009) High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all. J Proteome Res 8, 4743–52.PubMedCrossRefGoogle Scholar
  156. 156.
    Rewitz, K. F., Larsen, M. R., Lobner-Olesen, A., Rybczynski, R., O’Connor, M. B., and Gilbert, L. I. (2009) A phosphoproteomics approach to elucidate neuropeptide signal transduction controlling insect metamorphosis. Insect Biochem Mol Biol 39, 475–83.PubMedCrossRefGoogle Scholar
  157. 157.
    Zhang, Y., Ficarro, S. B., Li, S., and Marto, J. A. (2009) Optimized orbitrap HCD for quantitative analysis of phosphopeptides. J Am Soc Mass Spectrom 20, 1425–34.PubMedCrossRefGoogle Scholar
  158. 158.
    Maguire, P. B., Wynne, K. J., Harney, D. F., O’Donoghue, N. M., Stephens, G., and Fitzgerald, D. J. (2002) Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics 2, 642–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Li, Q. R., Ning, Z. B., Tang, J. S., Nie, S., and Zeng, R. (2009) Effect of peptide-to-TiO2beads ratio on phosphopeptide enrichment selectivity. J Proteome Res 8, 5375–81.PubMedCrossRefGoogle Scholar
  160. 160.
    Saleem, R. A., and Aitchison, J. D. (2009) Quantitative phosphoproteomics in fatty acid stimulated Saccharomyces cerevisiae. J Vis Exp 32,e1474. doi:10.3791/1474.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
  2. 2.Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeScotlandUK

Personalised recommendations