Exploring New Proteome Space: Combining Lys-N Proteolytic Digestion and Strong Cation Exchange (SCX) Separation in Peptide-Centric MS-Driven Proteomics

  • Nadia Taouatas
  • Shabaz Mohammed
  • Albert J.R. Heck
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 753)

Abstract

The current advances in mass spectrometry technology have led to the possibility of analyzing more complex biological samples such as entire proteomes. Here, we describe a new and powerful methodology that combines the use of the metalloendopeptidase Lys-N and strong cation exchange with mass spectrometric analysis. The approach described here allows one to separate peptides with different functional groups. The peptides we are able to isolate are N-terminal peptides, phosphorylated peptides with a single lysine, peptides with a single basic residue (lysine), and peptides with multiply basic residues. When this separation strategy is combined with tandem mass spectrometry that involves both collision-induced dissociation and electron transfer dissociation, one can achieve an optimal targeted strategy for proteome analysis.

Key words

Strong cation exchange (SCX) Lys-N mass spectrometry tandem mass spectrometry electron transfer dissociation 

References

  1. 1.
    Gevaert K., Van Damme P., Ghesquiere B., Impens F., Martens L., Helsens K., et al. (2007) A la carte proteomics with an emphasis on gel-free techniques. Proteomics 7, 2698–718.PubMedCrossRefGoogle Scholar
  2. 2.
    Link A. J., Eng J., Schieltz D. M., Carmack E., Mize G. J., Morris D. R., et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17, 676–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Washburn M. P., Wolters D., Yates J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Boersema P. J., Divecha N., Heck A. J., Mohammed S. (2007) Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J Proteome Res 6, 937–46.PubMedCrossRefGoogle Scholar
  5. 5.
    Motoyama A., Xu T., Ruse C. I., Wohlschlegel J. A., Yates J. R., 3rd (2007) Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 79, 3623–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Wu C. C., MacCoss M. J., Howell K. E., Yates J. R., 3rd (2003) A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21, 532–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Villen J., Gygi S. P. (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3, 1630–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Gruhler A., Olsen J. V., Mohammed S., Mortensen P., Faergeman N. J., Mann M., et al. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4, 310–27.PubMedCrossRefGoogle Scholar
  9. 9.
    Gnad F., de Godoy L. M., Cox J., Neuhauser N., Ren S., Olsen J. V., et al. (2009) High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9, 4642–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Dormeyer W., Mohammed S., Breukelen B., Krijgsveld J., Heck A. J. (2007) Targeted analysis of protein termini. J Proteome Res 6, 4634–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Steen H., Mann M. (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5, 699–711.PubMedCrossRefGoogle Scholar
  12. 12.
    Molina H., Horn D. M., Tang N., Mathivanan S., Pandey A. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104, 2199–204.PubMedCrossRefGoogle Scholar
  13. 13.
    Good D. M., Wirtala M., McAlister G. C., Coon J. J. (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6, 1942–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Mohammed S., Lorenzen K., Kerkhoven R., van Breukelen B., Vannini A., Cramer P., et al. (2008) Multiplexed proteomics mapping of yeast RNA polymerase II and III allows near-complete sequence coverage and reveals several novel phosphorylation sites. Anal Chem 80, 3584–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Coon J. J. (2009) Collisions or electrons? Protein sequence analysis in the 21st century. Anal Chem 81, 3208–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Leitner A., Foettinger A., Lindner W. (2007) Improving fragmentation of poorly fragmenting peptides and phosphopeptides during collision-induced dissociation by malondialdehyde modification of arginine residues. J Mass Spectrom 42, 950–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Bridgewater J. D., Srikanth R., Lim J., Vachet R. W. (2007) The effect of histidine oxidation on the dissociation patterns of peptide ions. J Am Soc Mass Spectrom 18, 553–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Coon J. J., Ueberheide B., Syka J. E., Dryhurst D. D., Ausio J., Shabanowitz J., et al. (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc Natl Acad Sci USA 102, 9463–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Taouatas N., Drugan M. M., Heck A. J., Mohammed S. (2008) Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nat Methods 5, 405–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Nonaka T., Ishikawa H., Tsumuraya Y., Hashimoto Y., Dohmae N. (1995) Characterization of a thermostable lysine-specific metalloendopeptidase from the fruiting bodies of a basidiomycete, Grifola frondosa. J Biochem 118, 1014–20.PubMedGoogle Scholar
  21. 21.
    Nonaka T., Dohmae N., Hashimoto Y., Takio K. (1997) Amino acid sequences of metalloendopeptidases specific for acyl-lysine bonds from Grifola frondosa and Pleurotus ostreatus fruiting bodies. J Biol Chem 272, 30032–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Taouatas N., Altelaar A. F., Drugan M. M., Helbig A. O., Mohammed S., Heck A. J. (2009) Strong cation exchange-based fractionation of Lys-N-generated peptides facilitates the targeted analysis of post-translational modifications. Mol Cell Proteomics 8, 190–200.PubMedCrossRefGoogle Scholar
  23. 23.
    Gauci S., Helbig A. O., Slijper M., Krijgsveld J., Heck A. J., Mohammed S. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493–501.PubMedCrossRefGoogle Scholar
  24. 24.
    Swaney D. L., McAlister G. C., Wirtala M., Schwartz J. C., Syka J. E., Coon J. J. (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79, 477–85.PubMedCrossRefGoogle Scholar
  25. 25.
    Righetti P. G. (2006) Real and imaginary artefacts in proteome analysis via two-dimensional maps. J Chromatogr B Analyt Technol Biomed Life Sci 841, 14–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Rao K. C., Carruth R. T., Miyagi M. (2005) Proteolytic 18O labeling by peptidyl-Lys metalloendopeptidase for comparative proteomics. J Proteome Res 4, 507–14.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nadia Taouatas
    • 1
  • Shabaz Mohammed
    • 1
  • Albert J.R. Heck
    • 1
  1. 1.Biomolecular Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations