Advertisement

Strain Engineering Strategies for Improving Whole-Cell Biocatalysis: Engineering Escherichia coli to Overproduce Xylitol as an Example

  • Jonathan W. Chin
  • Patrick C. Cirino
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 743)

Abstract

This chapter provides an overview of key tools and methodologies available to practitioners of biocatalysis interested in using microorganisms to carry out biotransformations and describes specific examples of applying genetic modification strategies for strain design. We focus on the use of the polymerase chain reaction (PCR) for gene amplification, plasmid DNA for recombinant gene cloning and expression, and homologous recombination and phage transduction for modifying chromosomal DNA. Specifically we use Escherichia coli as the host organism, and the overproduction of xylitol by reduction of xylose represents the biotransformation of interest.

Key words

Polymerase chain reaction (PCR) P1 phage transduction gene cloning plasmid construction gene knockout xylitol biocatalysis Escherichia coli 

References

  1. 1.
    Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1998) Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresour. Technol. 65, 191–201.CrossRefGoogle Scholar
  2. 2.
    Akinterinwa, O., Khankal, R., and Cirino, P. C. (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr. Opin. Biotechnol. 19, 461–467.CrossRefGoogle Scholar
  3. 3.
    Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., and Witholt, B. (2001) Industrial biocatalysis today and tomorrow. Nature 409, 258–268.CrossRefGoogle Scholar
  4. 4.
    Duetz, W. A., van Beilen, J. B., and Witholt, B. (2001) Using proteins in their natural environment: Potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotechnol. 12, 419–425.CrossRefGoogle Scholar
  5. 5.
    Chin, J. W., Khankal, R., Monroe, C. A., Maranas, C. D., and Cirino, P. C. (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol. Bioeng. 102, 209–220.CrossRefGoogle Scholar
  6. 6.
    Khankal, R., Luziatelli, F., Chin, J. W., Frei, C. S., and Cirino, P. C. (2008) Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E. coli B as platforms for xylitol production. Biotechnol. Lett. 30, 1645–1653.CrossRefGoogle Scholar
  7. 7.
    Cirino, P. C., Chin, J. W., and Ingram, L. O. (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol. Bioeng. 95, 1167–1176.CrossRefGoogle Scholar
  8. 8.
    Khankal, R., Chin, J. W., and Cirino, P. C. (2008) Role of xylose transporters in xylitol production from engineered Escherichia coli. J. Biotechnol. 134, 246–252.CrossRefGoogle Scholar
  9. 9.
    Akinterinwa, O., and Cirino, P. C. (2009) Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab. Eng. 11, 48–55.CrossRefGoogle Scholar
  10. 10.
    Zheng, D., Constantinidou, C., Hobman, J. L., and Minchin, S. D. (2004) Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res. 32, 5874–5893.CrossRefGoogle Scholar
  11. 11.
    Eppler, T., and Boos, W. (1999) Glycerol-3-phosphate-mediated repression of malT in Escherichia coli does not require metabolism, depends on enzyme IIAGlc and is mediated by cAMP levels. Mol. Microbiol. 33, 1221–1231.CrossRefGoogle Scholar
  12. 12.
    Wood, B. E., Yomano, L. P., York, S. W., and Ingram, L. O. (2005) Development of industrial-medium-required elimination of the 2,3-butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca. Biotechnol. Prog. 21, 1366–1372.CrossRefGoogle Scholar
  13. 13.
    Cherepanov, P. P., and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.CrossRefGoogle Scholar
  14. 14.
    Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.CrossRefGoogle Scholar
  15. 15.
    Kang, M. H., Ni, H., and Jeffries, T. W. (2003) Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 105–108, 265–276.CrossRefGoogle Scholar
  16. 16.
    Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  17. 17.
    Snyder, L., and Champness, W. (2007) Molecular Genetics of Bacteria. ASM Press, Washington, DC.Google Scholar
  18. 18.
    Hanahan, D., Jessee, J., and Bloom, F. R. (1995) Techniques for transformations of E. coli. In DNA Cloning 1: Core Techniques, Vol. 1 (Glover, D. M. and Homes, B. D., Eds.), Oxford University Press, New York, pp. 1–36.Google Scholar
  19. 19.
    Luria, S. E., Adams, J. N., and Ting, R. C. (1960) Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology 12, 348–390.CrossRefGoogle Scholar
  20. 20.
    Greene, J. J. (2004) Host cell compatibility in protein expression. Methods Mol. Biol. 267, 3–14.Google Scholar
  21. 21.
    Lipps, G. (2008) Plasmids: Current Research and Future Trends. Caister Academic, Norfolk.Google Scholar
  22. 22.
    Schleif, R. (2000) Regulation of the l-arabinose operon of Escherichia coli. Trends Genet. 16, 559–565.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations