Approaches to Study Differentiation and Repair of Human Airway Epithelial Cells

  • Sophie Crespin
  • Marc Bacchetta
  • Song Huang
  • Tecla Dudez
  • Ludovic Wiszniewski
  • Marc Chanson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 742)

Abstract

One of the main functions of the airway mucosa is to maintain a mechanical barrier at the air–surface interface and to protect the respiratory tract from external injuries. Differentiation of human airway epithelial cells (hAECs) to polarized airway mucosa can be reproduced in vitro by culturing the cells on microporous membrane at the air–liquid interface. Here, we describe approaches to study differentiation as well as repair of the hAECs by using a commercially available airway cell culture model called MucilAir™.

Key words

Human airway epithelial cell culture MucilAir™ differentiation wounding techniques repair cystic fibrosis 

Notes

Acknowledgments

This work was supported by the grants from the Swiss National Science Foundation and by Vaincre la Mucoviscidose.

References

  1. 1.
    Puchelle, E., and Zahm, J. M. (2006) Repair process of the airway epithelium, in (Lenfant, C., and Dekker, M., eds.), Airway Environment: From Injury to Repair. Series Lung biology in health and diseases. Marcel Dekker, New York, NY, pp. 1576–1582.Google Scholar
  2. 2.
    Voynow, J. A., Fischer, B. M., Roberts, B. C., and Proia, A. D. (2005) Basal-like cells constitute the proliferating cell population in cystic fibrosis airways. Am J Respir Crit Care Med 172, 1013–1038.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu, X., Driskell, R. R., and Engelhardt, J. F. (2006) Stem cells in the lung. Methods Enzymol 419, 285–321.PubMedCrossRefGoogle Scholar
  4. 4.
    Hajj, R., Lesimple, P., Nawrocki-Raby, B., Birembaut, P., Puchelle, E., and Coraux, C. (2007) Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis. J Pathol 211 3, 340–350.PubMedCrossRefGoogle Scholar
  5. 5.
    Gruenert, D. C., Finkbeiner, W. E., and Widdicombe, J. H. (1995) Culture and transformation of human airway epithelial cells. Am J Physiol 268 3 Pt 1, L347–360.Google Scholar
  6. 6.
    Yamaya, M., Finkbeiner, W. E., Chun, S. Y., and Widdicombe, J. H. (1992) Differentiated structure and function of cultures from human tracheal epithelium. Am J Physiol 262, L713–L724.PubMedGoogle Scholar
  7. 7.
    de Jong, P. M., van Sterkenburg, M. A., Hesseling, S. C., Kempenaar, J. A., Mulder, A. A., Mommaas, A. M., et al. (1994) Ciliogenesis in human bronchial epithelial cells cultured at the air–liquid interface. Am J Respir Cell Mol Biol 24, 224–234.Google Scholar
  8. 8.
    Johnson, L. G., Dickman, K. G., Moore, K. L., Mandel, L. J., and Boucher, R. C. (1993) Enhanced Na+ transport in an air–liquid interface culture system. Am J Physiol 264, L560–L565.PubMedGoogle Scholar
  9. 9.
    Karp, P. H., Moninger, T. O., Weber, S. P., Nesselhauf, T. S., Launspach, J. L., Zabner, J., et al. (2002) An in vitro model of differentiated human airway epithelia. Methods for establishing primary cultures. Methods Mol Biol 188, 115–137.PubMedGoogle Scholar
  10. 10.
    Fulcher, M. L., Gabriel, S., Burns, K. A., Yankaskas, J. R., and Randell, S. H. (2005) Well-Differentiated Human Airway Epithelial Cell Cultures. Human Cell Culture Protocols, 2nd ed, Methods Mol. Med., vol 107. Springer, New York, NY, pp. 183–206.Google Scholar
  11. 11.
    Wiszniewski, L., Jornot, L., Dudez, T., Pagano, A., Rochat, T., Lacroix, J. S., et al. (2006) Long-term cultures of polarized airway epithelial cells from patients with cystic fibrosis. Am J Respir Cell Mol Biol 34, 39–48.PubMedCrossRefGoogle Scholar
  12. 12.
    Wiszniewski, L., Sanz, J., Scerri, I., Gasparotto, E., Dudez, T., Lacroix, J. S., et al. (2007) Functional expression of connexin30 and connexin31 in the polarized human airway epithelium. Differentiation 75, 382–392.PubMedCrossRefGoogle Scholar
  13. 13.
    Puchelle, E., Zahm, J. M., Tournier, J. M., and Coraux, C. (2006) Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc 3, 726–733.PubMedCrossRefGoogle Scholar
  14. 14.
    Planus, E., Galiacy, S., Matthay, M., Laurent, V., Galvrilovic, J., Murphy, G., et al. (1999) Role of collagenase in mediating in vitro alveolar epithelial wound repair. J Cell Sci 112, 243–252.PubMedGoogle Scholar
  15. 15.
    Lechapt-Zalcman, E., Prulière-Escabasse, V., Advenier, D., Galiacy, S., Charrière-Bertrand, C., Coste, A., et al. (2006) Transforming growth factor-beta1 increases airway wound repair via MMP-2 upregulation: a new pathway for epithelial wound repair?. Am J Physiol Lung Cell Mol Physiol 290, L1277–L1282.PubMedCrossRefGoogle Scholar
  16. 16.
    Vermeer, P. D., Einwalter, L. A., Moninger, T. O., Rokhlina, T., Kern, J. A., Zabner, J., et al. (2003) Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature 422, 322–326.PubMedCrossRefGoogle Scholar
  17. 17.
    Tournier, J. M., Maouche, K., Coraux, C., Zahm, J. M., Cloëz-Tayarani, I., Nawrocki-Raby, B., Bonnomet, A., et al. (2006) alpha3alpha5beta2-Nicotinic acetylcholine receptor contributes to the wound repair of the respiratory epithelium by modulating intracellular calcium in migrating cells. Am J Pathol 168, 55–68.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sophie Crespin
    • 1
  • Marc Bacchetta
    • 1
  • Song Huang
    • 2
  • Tecla Dudez
    • 1
  • Ludovic Wiszniewski
    • 2
  • Marc Chanson
    • 1
  1. 1.Laboratory of Clinical Investigation III, Faculty of Medicine, Department of PediatricsGeneva University Hospitals and University of Geneva, Foundation for Medical ResearchGenevaSwitzerland
  2. 2.Epithelix, SàRLPlan-les-OuatesSwitzerland

Personalised recommendations