Cystic Fibrosis pp 87-107

Part of the Methods in Molecular Biology book series (MIMB, volume 741)

Measurement of Ion Transport Function in Rectal Biopsies

  • Martin J. Hug
  • Nico Derichs
  • Inez Bronsveld
  • Jean Paul Clancy
Protocol

Abstract

Cystic fibrosis (CF) is caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as an anion channel and is known to interact with a number of other cellular proteins involved in ion transport. To date more than 1,800 mutations are known, most of which result in various degrees of impaired transport function of the gene product. Due to the high inter-individual variability of disease onset and progression, CF still is a diagnostic challenge. Implemented almost 20 years ago, the measurement of electrolyte transport function of rectal biopsies is a useful ex vivo tool to diagnose CF. In this chapter we will review the different approaches to perform ion transport measurements and try to highlight the advantages and limitations of these techniques.

Key words

Epithelial cells cystic fibrosis CFTR Ussing chamber electrolyte transport 

References

  1. 1.
    Reid, E. W. (1889) Report on experiments upon “absorption without osmosis”. Brit. Med. J. 1, 323–326.CrossRefGoogle Scholar
  2. 2.
    Reid, E. W. (1901) Transport of fluid by certain epithelia. J. Physiol. 26(6), 436–444.PubMedGoogle Scholar
  3. 3.
    Levi, H., and Ussing, H. H. (1949) Resting potential and ion movements in the frog skin. Nature 164, 928.PubMedCrossRefGoogle Scholar
  4. 4.
    Koefoed-Johnsen, V., and Ussing, H. H. (1958) The nature of the frog skin potential. Acta Physiol. Scand. 42, 298–308.PubMedCrossRefGoogle Scholar
  5. 5.
    Ussing, H. H., and Zerahn, K. (1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23, 110–127.PubMedCrossRefGoogle Scholar
  6. 6.
    Kottra, G., Weber, G., and Frömter, E. (1989) A method to quantify and correct for edge leaks in Ussing chambers. Pflügers Archiv. Eur. J. Physiol. 415, 235–240.CrossRefGoogle Scholar
  7. 7.
    Gitter, A. H., Schulzke, J. D., Sorgenfrei, D., and Fromm, M. (1997) Ussing chamber for high-frequency transmural impedance analysis of epithelial tissues. J. Biochem. Biophys. Methods 35, 81–88.PubMedCrossRefGoogle Scholar
  8. 8.
    Singh, A. K., Singh, S., Devor, D. C., Frizzell, R. A., Driessche, W. V., Bridges, R. J. (2002) Transepithelial impedance analysis of chloride secretion, in (William R. S., ed.), Cystic fibrosis methods and protocols, Vol. 70, pp. 129–142. Humana Press Inc., Totowa, NJ, USA.Google Scholar
  9. 9.
    Kunzelmann, K., and Mall, M. (2002) Electrolyte transport in the mammalian colon: Mechanisms and implications for disease. Physiol. Rev. 82, 245–289.PubMedGoogle Scholar
  10. 10.
    Gitter, A. H., Bendfeldt, K., Schulzke, J. D., and Fromm, M. (2000) Trans/paracellular, surface/crypt, and epithelial/subepithelial resistances of mammalian colonic epithelia. Pflügers Arch. 439, 477–482.PubMedCrossRefGoogle Scholar
  11. 11.
    Debongnie, J. C., and Phillips, S. F. (1978) Capacity of the human colon to absorb fluid. Gastroenterology 74, 698–703.PubMedGoogle Scholar
  12. 12.
    Canessa, C. M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J. D., et al. (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463–467.PubMedCrossRefGoogle Scholar
  13. 13.
    Heitzmann, D., and Warth, R. (2008) Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol. Rev. 88, 1119–1182.PubMedCrossRefGoogle Scholar
  14. 14.
    Schroeder, B. C., Waldegger, S., Fehr, S., Bleich, M., Warth, R., Greger, R., et al. (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403, 196–199.PubMedCrossRefGoogle Scholar
  15. 15.
    Joiner, W. J., Basavappa, S., Vidyasagar, S., et al. (2003) Active K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G185–196.PubMedGoogle Scholar
  16. 16.
    Butterfield, I., Warhurst, G., Jones, M. N., and Sandle, G. I. (1997) Characterization of apical potassium channels induced in rat distal colon during potassium adaptation. J. Physiol. 501, 537–547.PubMedCrossRefGoogle Scholar
  17. 17.
    Matos, J. E., Sausbier, M., Beranek, G., Sausbier, U., Ruth, P., and Leipziger, J. (2007) Role of cholinergic-activated KCa1.1 (BK), KCa3.1 (SK4) and KV7.1 (KCNQ1) channels in mouse colonic Cl secretion. Acta Physiol. 189, 251–258.CrossRefGoogle Scholar
  18. 18.
    Sausbier, M., Matos, J. E., Sausbier, U., Beranek, G., Arntz, C., Neuhuber, W., et al. (2006) Distal colonic K(+) secretion occurs via BK channels. J. Am. Soc. Nephrol. 17, 1275–1282.PubMedCrossRefGoogle Scholar
  19. 19.
    Quinton, P., and Bijman, J. (1983) Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N. Engl. J. Med. 308, 1185–1189.PubMedCrossRefGoogle Scholar
  20. 20.
    Greger, R. (2000) Role of CFTR in the colon. Annu. Rev. Physiol. 62, 467–491.PubMedCrossRefGoogle Scholar
  21. 21.
    Russo, M. A., Hogenauer, C., Coates, S. W., Santa Ana, C. A., Porter, J. L., Rosenblatt, R. L., et al. (2003) Abnormal passive chloride absorption in cystic fibrosis jejunum functionally opposes the classic chloride secretory defect. J. Clin. Invest. 112, 118–125.PubMedGoogle Scholar
  22. 22.
    Catalán, M., Niemeyer, M. I., Cid, L. P., and Sepúlveda, F. V. (2004) Basolateral ClC-2 chloride channels in surface colon epithelium: Regulation by a direct effect of intracellular chloride. Gastroenterology 126, 1104–1114.PubMedCrossRefGoogle Scholar
  23. 23.
    Traynor, T. R., and O’Grady, S. M. (1992) Mechanisms of Na and Cl absorption across the distal colon epithelium of the pig. J. Comp. Physiol. B 162, 47–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Umar, S., Scott, J., Sellin, J. H., Dubinsky, W. P., and Morris, A. P. (2000) Murine colonic mucosa hyperproliferation. I. Elevated CFTR expression and enhanced cAMP-dependent Cl secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G753–764.PubMedGoogle Scholar
  25. 25.
    Lucas, M. L. (2008) Enterocyte chloride and water secretion into the small intestine after enterotoxin challenge: Unifying hypothesis or intellectual dead end? J. Physiol. Biochem. 64, 69–88.PubMedCrossRefGoogle Scholar
  26. 26.
    Veeze, H. J., Sinaasappel, M., Bijman, J., Bouquet, J., and de Jonge, H. R. (1991) Ion transport abnormalities in rectal suction biopsies from children with cystic fibrosis. Gastroenterology 101, 398–403.PubMedGoogle Scholar
  27. 27.
    Mall, M., Bleich, M., Schürlein, M., Kühr, J., Seydewitz, H. H., Brandis, M., Greger, R., and Kunzelmann, K. (1998) Cholinergic ion secretion in human colon requires coactivation by cAMP. Am. J. Physiol. Gastrointest. Liver Physiol. 275, G1274–1281.Google Scholar
  28. 28.
    Mall, M., Hirtz, S., Gonska, T., and Kunzelmann, K. (2004) Assessment of CFTR function in rectal biopsies for the diagnosis of cystic fibrosis. J. Cyst. Fibros. 3, 165–169.PubMedCrossRefGoogle Scholar
  29. 29.
    Hirtz, S., Gonska, T., Seydewitz, H. H., Thomas, J., Greiner, P., Kuehr, J., et al. (2004) CFTR Cl channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology 127, 1085–1095.PubMedCrossRefGoogle Scholar
  30. 30.
    Derichs, N., Knoll, J., Hyde, R., Pedemonte, N., Galietta, L. V., and Ballmann, M. (2009) Preclinical evaluation of CFTR modulators in ex vivo human rectal tissue. Pediatr. Pulmonol. 44, 292.Google Scholar
  31. 31.
    de Jonge, H. R., Ballmann, M., Veeze, H. J., Bronsveld, I., Stanke, F., Tümmler, B., et al. (2004) Ex vivo CF diagnosis by intestinal current measurements (ICM) in small aperture, circulating Ussing chambers. J. Cyst. Fibros. 3, 159–163.PubMedCrossRefGoogle Scholar
  32. 32.
    Stanke, F., Ballmann, M., Bronsveld, I., Dörk, T., Gallati, S., Laabs, U., et al. (2008) Diversity of the basic defect of homozygous CFTR mutation genotypes in humans. J. Med. Genet. 45, 47–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Du, M., Jones, J. R., Lanier, J., Keeling, K. M., Lindsey, J. R., Tousson, A., et al. (2002) Aminoglycoside suppression of a premature stop mutation in a Cftr–/– mouse carrying a human CFTR-G542X transgene. J. Mol. Med. 80, 595–604.PubMedCrossRefGoogle Scholar
  34. 34.
    Du, M., Keeling, K. M., and Fan, L. (2006) Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J. Mol. Med. 84, 573–582.PubMedCrossRefGoogle Scholar
  35. 35.
    Du, M., Liu, X., Welch, E. M., Hirawat, S., Peltz, S. W., and Bedwell, D. M. (2008) PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc. Natl. Acad. Sci. USA 105, 2064–2069.PubMedCrossRefGoogle Scholar
  36. 36.
    Du, M., Keeling, K. M., Fan, L., Liu, X., and Bedwell, D. M. (2009) Poly-L-aspartic acid enhances and prolongs gentamicin-mediated suppression of the CFTR-G542X mutation in a cystic fibrosis mouse model. J. Biol. Chem. 284, 6885–6892.PubMedCrossRefGoogle Scholar
  37. 37.
    Clancy, J. P., Rowe, S. M., Bebok, Z., Aitken, M. L., Gibson, R., Zeitlin, P., et al. (2007) No detectable improvements in cystic fibrosis transmembrane conductance regulator by nasal aminoglycosides in patients with cystic fibrosis with stop mutations. Am. J. Respir. Cell Mol. Biol. 37, 57–66.PubMedCrossRefGoogle Scholar
  38. 38.
    Davidson, H., Wilson, A., Gray, R. D., Horsley, A., Pringle, I. A., McLachlan, G., et al. (2009) An immunocytochemical assay to detect human CFTR expression following gene transfer. Mol. Cell. Probes 23, 272–280.PubMedCrossRefGoogle Scholar
  39. 39.
    Harris, C. M., Mendes, F., Dragomir, A., Doull, I. J., Carvalho-Oliveira, I., Bebok, Z., et al. (2004) Assessment of CFTR localisation in native airway epithelial cells obtained by nasal brushing. J. Cyst. Fibros. 3, 43–48.PubMedCrossRefGoogle Scholar
  40. 40.
    Wilschanski, M., Yahav, Y., Yaacov, Y., Blau, H., Bentur, L., Rivlin, J., et al. (2003) Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 349, 1433–1441.PubMedCrossRefGoogle Scholar
  41. 41.
    Ma, T., Vetrivel, L., Yang, H., Pedemonte, N., Zegarra-Moran, O., Galietta, L. J., et al. (2002) High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J. Biol. Chem. 277, 37235–37241.PubMedCrossRefGoogle Scholar
  42. 42.
    Yang, H., Shelat, A. A., Guy, R. K., Gopinath, V. S., Ma, T., Du, K., et al. (2003) Nanomolar affinity small molecule correctors of defective Delta F508-CFTR chloride channel gating. J. Biol. Chem. 278, 35079–35085.PubMedCrossRefGoogle Scholar
  43. 43.
    Welch, E. M., Barton, E. R., Zhuo, J., Tomizawa, Y., Friesen, W. J., Trifillis, P., et al. (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Robert, R., Carlile, G. W., Pavel, C., Liu, N., Anjos, S. M., Liao, J., et al. (2008) Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol. Pharmacol. 73, 478–489.PubMedCrossRefGoogle Scholar
  45. 45.
    Van Goor, F., Straley, K. S., Cao, D., González, J., Hadida, S., Hazlewood, A., et al. (2006) Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L1117–1130.PubMedCrossRefGoogle Scholar
  46. 46.
    Van Goor, F., Hadida, S., Grootenhuis, P. D., Burton, B., Cao, D., Neuberger, T., et al. (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl. Acad. Sci. USA 106, 18825–18830.PubMedCrossRefGoogle Scholar
  47. 47.
    Al-Nakkash, L., and Hwang, T. C. (1999) Activation of wild-type and deltaF508-CFTR by phosphodiesterase inhibitors through cAMP-dependent and -independent mechanisms. Pflugers Arch. 437, 553–561.PubMedCrossRefGoogle Scholar
  48. 48.
    Hwang, T. C., Wang, F., Yang, I. C., and Reenstra, W. W. (1997) Genistein potentiates wild-type and delta F508-CFTR channel activity. Am. J. Physiol. 273, C988–998.PubMedGoogle Scholar
  49. 49.
    Wang, W., Bernard, K., Li, G., and Kirk, K. L. (2007) Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. J. Biol. Chem. 282, 4533–4544.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang, W., Li, G., Clancy, J. P., and Kirk, K. L. (2005) Activating cystic fibrosis transmembrane conductance regulator channels with pore blocker analogs. J. Biol. Chem. 280, 23622–23630.PubMedCrossRefGoogle Scholar
  51. 51.
    Gibson, L. E., and Cooke, R. E. (1959) A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23, 545–549.PubMedGoogle Scholar
  52. 52.
    Knowles, M., Gatzy, J., and Boucher, R. (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N. Engl. J. Med. 305, 1489–1495.PubMedCrossRefGoogle Scholar
  53. 53.
    Veeze, H. J., Halley, D. J. J., Bijman, J., de Jongste, J. C., de Jonge, H. R., and Sinaasappel, M. (1994) Determinants of mild clinical symptoms in cystic fibrosis patients – Residual chloride secretion measured in rectal biopsies in relation to the genotype. J. Clin. Invest. 93, 461–466.PubMedCrossRefGoogle Scholar
  54. 54.
    Bronsveld, I., Mekus, F., Bijman, J., Ballmann, M., Greipel, J., Hundrieser, J., et al (2000) Residual chloride secretion in intestinal tissue of DF508 homozygous twins and siblings with cystic fibrosis. Gastroenterology 119, 32–40.PubMedCrossRefGoogle Scholar
  55. 55.
    Derichs, N., Mekus, F., Bronsveld, I., Bijman, J., Veeze, H. J., von der Hardt, H., et al. (2004) Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated residual chloride secretion does not protect against early chronic Pseudomonas aeruginosa infection in F508del homozygous cystic fibrosis patients. Pediatr. Res. 55, 69–75.PubMedCrossRefGoogle Scholar
  56. 56.
    Pedemonte, N., Lukacs, G. L., Du, K., Caci, E., Zegarra-Moran, O., Galietta, L. J., et al. (2005) Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J. Clin. Invest. 115, 2564–2571.PubMedCrossRefGoogle Scholar
  57. 57.
    Amaral, M. D., and Kunzelmann, K. (2007) Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol. Sci. 28, 334–341.PubMedCrossRefGoogle Scholar
  58. 58.
    Verkman, A. S., and Galietta, L. J. (2009) Chloride channels as drug targets. Nat. Rev. Drug Discov. 8, 153–171.PubMedCrossRefGoogle Scholar
  59. 59.
    Rowe, S. M., Accurso, F., and Clancy, J. P. (2007) Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc. Am. Thorac. Soc. 4, 387–398.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin J. Hug
    • 1
  • Nico Derichs
    • 2
    • 3
  • Inez Bronsveld
    • 4
  • Jean Paul Clancy
    • 5
  1. 1.Pharmacy, University Medical Center FreiburgFreiburgGermany
  2. 2.Cystic Fibrosis Center, Pediatric Pulmonology and Neonatology, Medizinische Hochschule HannoverHannoverGermany
  3. 3.CFTR Biomarker Center, Christiane-Herzog-Zentrum für Mukoviszidose, Charité Universitätsmedizin BerlinBerlinGermany
  4. 4.Department of Pulmonology and TuberculosisUniversity Medical Center UtrechtUtrechtThe Netherlands
  5. 5.Department of PediatricsUniversity of AlabamaBirminghamUSA

Personalised recommendations