Cystic Fibrosis pp 347-363

Part of the Methods in Molecular Biology book series (MIMB, volume 741)

Molecular Modeling Tools and Approaches for CFTR and Cystic Fibrosis

  • Adrian W.R. Serohijos
  • Patrick H. Thibodeau
  • Nikolay V. Dokholyan
Protocol

Abstract

Cystic fibrosis is a multi-faceted disease resulting from the dysfunction of the CFTR channel. Understanding the structural basis of channel function and the structural origin of the defect is imperative in the development of therapeutic strategies. Here, we describe molecular modeling tools that, in conjunction with complementary experimental tools, lead to significant findings on CFTR channel function and on the effect of the pathogenic mutant F508del.

Key words

Cystic fibrosis CFTR, ABC proteins molecular modeling homology modeling discrete molecular dynamics protein stability estimations 

References

  1. 1.
    Riordan, J. R., Rommens, J. M., Kerem, B. S., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989) Identification of the cystic-fibrosis gene – cloning and characterization of complementary-DNA. Science 245, 1066–1072.PubMedCrossRefGoogle Scholar
  2. 2.
    Serohijos, A. W., Hegedus, T., Aleksandrov, A. A., He, L., Cui, L., Dokholyan, N. V., et al. (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc. Natl. Acad. Sci. USA 105, 3256–3261.PubMedCrossRefGoogle Scholar
  3. 3.
    He, L., Aleksandrov, A. A., Serohijos, A. W., Hegedus, T., Aleksandrov, L. A., Cui, L., et al. (2008) Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating. J. Biol. Chem. 283, 26383–26390.PubMedCrossRefGoogle Scholar
  4. 4.
    Shakhnovich, E. (2006) Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet. Chem. Rev. 106, 1559–1588.PubMedCrossRefGoogle Scholar
  5. 5.
    Bowie, J. U. (2005) Solving the membrane protein folding problem. Nature 438, 581–589.PubMedCrossRefGoogle Scholar
  6. 6.
    Qu, B. H., Strickland, E. H., and Thomas, P. J. (1997) Cystic fibrosis: a disease of altered protein folding. J. Bioenerg. Biomembr. 29, 483–490.PubMedCrossRefGoogle Scholar
  7. 7.
    Thibodeau, P. H., Brautigam, C. A., Machius, M., and Thomas, P. J. (2005) Side chain and backbone contributions of Phe508 to CFTR folding. Nat. Struct. Mol. Biol. 12, 10–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Cyr, D. M. (2005) Arrest of CFTRDeltaF508 folding. Nat. Struct. Mol. Biol. 12, 2–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Pissarra, L. S., Farinha, C. M., Xu, Z., Schmidt, A., Thibodeau, P. H., Cai, Z., et al. (2008) Solubilizing mutations used to crystallize one CFTR domain attenuate the trafficking and channel defects caused by the major cystic fibrosis mutation. Chem. Biol. 15, 62–69.PubMedCrossRefGoogle Scholar
  10. 10.
    Ginalski, K., and Rychlewski, L. (2003) Detection of reliable and unexpected protein fold predictions using 3D-Jury. Nucleic Acids Res. 31, 3291–3292.PubMedCrossRefGoogle Scholar
  11. 11.
    Lewis, H. A., Buchanan, S. G., Burley, S. K., Conners, K., Dickey, M., Dorwart, M., et al. (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J. 23, 282–293.PubMedCrossRefGoogle Scholar
  12. 12.
    Lewis, H. A., Zhao, X., Wang, C., Sauder, J. M., Rooney, I., Noland, B. W., et al. (2005) Impact of the Delta F508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J. Biol. Chem. 280, 1346–1353.PubMedCrossRefGoogle Scholar
  13. 13.
    Callebaut, I., Eudes, R., Mornon, J. P., and Lehn, P. (2004) Nucleotide-binding domains of human cystic fibrosis transmembrane conductance regulator: detailed sequence analysis and three-dimensional modeling of the heterodimer. Cell. Mol. Life Sci. 61, 230–242.PubMedCrossRefGoogle Scholar
  14. 14.
    Dawson, R. J. P., and Locher, K. P. (2006) Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185.PubMedCrossRefGoogle Scholar
  15. 15.
    Hollenstein, K., Dawson, R. J. P., and Locher, K. P. (2007) Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol. 17, 412–418.PubMedCrossRefGoogle Scholar
  16. 16.
    Hollenstein, K., Frei, D. C., and Locher, K. P. (2007) Structure of an ABC transporter in complex with its binding protein. Nature 446, 213–216.PubMedCrossRefGoogle Scholar
  17. 17.
    Pinkett, H. W., Lee, A. T., Lum, P., Locher, K. P., and Rees, D. C. (2007) An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315, 373–377.PubMedCrossRefGoogle Scholar
  18. 18.
    Ward, A., Reyes, C. L., Yu, J., Roth, C. B., and Chang, G. (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc. Natl. Acad. Sci. USA 14, 19005–19010.CrossRefGoogle Scholar
  19. 19.
    Tusnady, G. E., Dosztanyi, Z., and Simon, I. (2005) PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res. 33, D275–D278.PubMedCrossRefGoogle Scholar
  20. 20.
    Chang, X. B., Hou, Y. X., Jensen, T. J., and Riordan, J. R. (1994) Mapping of cystic-fibrosis transmembrane conductance regulator membrane topology by glycosylation site insertion. J. Biol. Chem. 269, 18572–18575.PubMedGoogle Scholar
  21. 21.
    Tusnady, G. E., and Simon, I. (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849–850.PubMedCrossRefGoogle Scholar
  22. 22.
    Ding, F., and Dokholyan, N. V. (2006) Emergence of protein fold families through rational design. PloS Comput. Biol. 2, 725–733.Google Scholar
  23. 23.
    Ding, F., Tsao, D., Nie, H., and Dokholyan, N. V. (2008) Ab initio folding of proteins with all-atom discrete molecular dynamics. Structure 16, 1010–1018.PubMedCrossRefGoogle Scholar
  24. 24.
    Yin, S., Ding, F., and Dokholyan, N. V. (2007) Modeling backbone flexibility improves protein stability estimation. Structure 15, 1567–1576.PubMedCrossRefGoogle Scholar
  25. 25.
    Yin, S., Ding, F., and Dokholyan, N. V. (2007) Eris: an automated estimator of protein stability. Nat. Methods 4, 466–467.PubMedCrossRefGoogle Scholar
  26. 26.
    Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., et al. (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383.PubMedCrossRefGoogle Scholar
  27. 27.
    Dill, K. A., Ozkan, S. B., Shell, M. S., and Weikl, T. R. (2008) The protein folding problem. Annu. Rev. Biophys. 37, 289–316.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen, Y., Ding, F., Nie, H., Serohijos, A. W., Sharma, S., Wilcox, K. C., et al. (2008) Protein folding: then and now. Arch. Biochem. Biophys. 469, 4–19.PubMedCrossRefGoogle Scholar
  29. 29.
    Ding, F., and Dokholyan, N. V. (2005) Simple but predictive protein models. Trends Biotechnol. 23, 450–455.PubMedCrossRefGoogle Scholar
  30. 30.
    Serohijos, A. W., Hegedus, T., Riordan, J. R., and Dokholyan, N. V. (2008) Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding. PLoS Comput. Biol. 4, e1000008.PubMedCrossRefGoogle Scholar
  31. 31.
    Khare, S., Ding, F., and Dokholyan, N. V. (2003) Hybrid molecular dynamics studies on Cu,Zn superoxide dismutase reveal topologically important residues. Abstr. Pap. Am. Chem. Soc. 225, U704–U704.Google Scholar
  32. 32.
    Sharma, S., Ding, F., Nie, H., Watson, D., Unnithan, A., Lopp, J., et al. (2006) iFold: a platform for interactive folding simulations of proteins. Bioinformatics 22, 2693–2694.PubMedCrossRefGoogle Scholar
  33. 33.
    Hubner, I. A., Shimada, J., and Shakhnovich, E. I. (2004) Commitment and nucleation in the protein G transition state. J. Mol. Biol. 336, 745–761.PubMedCrossRefGoogle Scholar
  34. 34.
    Goldberg, A. L. (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899.PubMedCrossRefGoogle Scholar
  35. 35.
    Davidson, A. L., and Chen, J. (2004) ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem. 73, 241–268.PubMedCrossRefGoogle Scholar
  36. 36.
    Dean, M., Rzhetsky, A., and Allikmets, R. (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156–1166.PubMedCrossRefGoogle Scholar
  37. 37.
    Wilken, S., Schmees, G., and Schneider, E. (1996) A putative helical domain in the MalK subunit of the ATP-binding-cassette transport system for maltose of Salmonella typhimurium (MalFGK2) is crucial for interaction with MalF and MalG. A study using the LacK protein of Agrobacterium radiobacter as a tool. Mol. Microbiol. 22, 655–666.PubMedCrossRefGoogle Scholar
  38. 38.
    Strickland, E., Qu, B. H., Millen, L., and Thomas, P. J. (1997) The molecular chaperone Hsc70 assists the in vitro folding of the N-terminal nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 272, 25421–25424.PubMedCrossRefGoogle Scholar
  39. 39.
    Mossessova, E., and Lima, C. D. (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876.PubMedCrossRefGoogle Scholar
  40. 40.
    Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.PubMedCrossRefGoogle Scholar
  41. 41.
    Lukacs, G. L., Mohamed, A., Kartner, N., Chang, X. B., Riordan, J. R., and Grinstein, S. (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 13, 6076–6086.PubMedGoogle Scholar
  42. 42.
    Richardson, J. M., Thibodeau, P. H., Watson, J., and Thomas, P. J. (2007) Identification of a non-native state of NBD1 that is affected by ΔF508. Pediatr. Pulmonol. Suppl. 30, 1.Google Scholar
  43. 43.
    Mendoza, J. L., and Thomas, P. J. (2007) Building an understanding of cystic fibrosis on the foundation of ABC transporter structures. J. Bioenerg. Biomembr. 39, 499–505.PubMedCrossRefGoogle Scholar
  44. 44.
    Hegedus, T., Serohijos, A. W., Dokholyan, N. V., He, L., and Riordan, J. R. (2008) Computational studies reveal phosphorylation dependent changes in the unstructured R domain of CFTR. J. Mol. Biol. 378, 1052–1063.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Adrian W.R. Serohijos
    • 1
    • 2
  • Patrick H. Thibodeau
    • 3
  • Nikolay V. Dokholyan
    • 4
  1. 1.Department of Physics and Astronomy, Program in Molecular and Cellular BiophysicsUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  3. 3.Department of Cell Biology and PhysiologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  4. 4.Department of Biochemistry and BiophysicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations