Advertisement

Neuropeptidomics of the Mammalian Brain

  • Fang Xie
  • Elena V. Romanova
  • Jonathan V. SweedlerEmail author
Protocol
Part of the Neuromethods book series (NM, volume 57)

Abstract

A suite of bioactive peptides orchestrates a variety of cellular interactions in the mammalian brain. A new bioanalytical strategy, neuropeptidomics, has evolved from the quest to characterize these important signaling peptides (SPs). The goal of a neuropeptidomics experiment is to characterize the peptides present in an intact brain, brain region, or individual neuron. To succeed, a neuropeptidomics measurement needs to deal with the large dynamic range and low abundance of some neuropeptides in a background of peptides from postmortem degradation of ubiquitous proteins. Core components of a successful ­neuropeptidomics study include effective tissue sampling, sensitive and robust peptide characterization, and comprehensive data analysis and interpretation. Mass spectrometry (MS) has become the central analytical approach for high-throughput, high-confidence characterization of the brain peptidome because of its capability to detect, identify, and quantify known and unknown peptides. Robust fractionation techniques, such as two-dimensional liquid chromatography, are commonly used in conjunction with MS to enhance investigation of the peptidome. Identification and characterization of peptides are more complex when neuropeptide prohormone genes have not been annotated. This chapter outlines techniques and describes protocols for three different experimental designs that combine MS with liquid chromatography, each aimed at high-throughput discovery of peptides in brain tissue. Further, we describe the currently available bioinformatics tools for automatic query of the experimental data against existing protein databases, as well as manual retrieval of structural information from raw MS data.

Key words

Neuropeptidome Hormone Neuropeptide Bioinformatics Liquid chromatography Mass spectrometry 

Notes

Acknowledgments

The project described was supported by Award Number P30 DA018310 from the National Institute on Drug Abuse (NIDA), and by Award No. NS031609 from the National Institute of Neurological Disorders and Stroke (NINDS). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIDA, NINDS, or the National Institutes of Health.

References

  1. 1.
    Li, L., Sweedler, J. V. (2008) Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Ann. Rev. Anal. Chem. 1, 451–483.CrossRefGoogle Scholar
  2. 2.
    Boonen, K., Landuyt, B., Baggerman, G., Husson, S. J., Huybrechts, J., Schoofs, L. (2008) Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J. Sep. Sci. 31, 427–445.PubMedCrossRefGoogle Scholar
  3. 3.
    Clynen, E., Baggerman, G., Veelaert, D., Cerstiaens, A., Van der Horst, D., Harthoorn, L., et al. (2001) Peptidomics of the pars intercerebralis-corpus cardiacum complex of the migratory locust, Locusta migratoria. Eur. J. Biochem. 268, 1929–1939.PubMedCrossRefGoogle Scholar
  4. 4.
    Schrader, M., Schulz-Knappe, P. (2001) Peptidomics technologies for human body fluids. Trends Biotechnol. 19, S55–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Verhaert, P., Uttenweiler-Joseph, S., de Vries, M., Loboda, A., Ens, W., Standing, K. G. (2001) Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics 1, 118–131.PubMedCrossRefGoogle Scholar
  6. 6.
    Bora, A., Annangudi, S. P., Millet, L. J., Rubakhin, S. S., Forbes, A. J., Kelleher, N. L., et al. (2008) Neuropeptidomics of the supraoptic rat nucleus. J. Proteome Res. 7, 4992–5003.PubMedCrossRefGoogle Scholar
  7. 7.
    Che, F. Y., Lim, J., Pan, H., Biswas, R., Fricker, L. D. (2005) Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Mol. Cell Proteomics 4, 1391–1405.PubMedCrossRefGoogle Scholar
  8. 8.
    Boonen, K., Baggerman, G., D’Hertog, W., Husson, S. J., Overbergh, L., Mathieu, C., et al. (2007) Neuropeptides of the islets of Langerhans: a peptidomics study. Gen. Comp. Endocrinol. 152, 231–241.PubMedCrossRefGoogle Scholar
  9. 9.
    Dowell, J. A., Heyden, W. V., Li, L. (2006) Rat neuropeptidomics by LC-MS/MS and MALDI-FTMS: Enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC. J. Proteome Res. 5, 3368–3375.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang, X., Scalf, M., Berggren, T. W., Westphall, M. S., Smith, L. M. (2006) Identification of mammalian cell lines using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 490–499.PubMedCrossRefGoogle Scholar
  11. 11.
    Canas, B., Pineiro, C., Calvo, E., Lopez-Ferrer, D., Gallardo, J. M. (2007) Trends in sample preparation for classical and second generation proteomics. J. Chromatogr. A 1153, 235–258.PubMedCrossRefGoogle Scholar
  12. 12.
    Garden, R. W., Shippy, S. A., Li, L., Moroz, T. P., Sweedler, J. V. (1998) Proteolytic processing of the Aplysia egg-laying hormone prohormone. Proc. Natl. Acad. Sci. USA. 95, 3972–3977.PubMedCrossRefGoogle Scholar
  13. 13.
    Altschul, S. F., Lipman, D. J. (1990) Protein database searches for multiple alignments. Proc. Natl. Acad. Sci. USA. 87, 5509–5513.PubMedCrossRefGoogle Scholar
  14. 14.
    Amare, A., Hummon, A. B., Southey, B. R., Zimmerman, T. A., Rodriguez-Zas, S. L., Sweedler, J. V. (2006) Bridging neuropeptidomics and genomics with bioinformatics: prediction of mammalian neuropeptide prohormone processing. J. Proteome Res. 5, 1162–1167.PubMedCrossRefGoogle Scholar
  15. 15.
    Southey, B. R., Amare, A., Zimmerman, T. A., Rodriguez-Zas, S. L., Sweedler, J. V. (2006) NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res. 34, W267–272.PubMedCrossRefGoogle Scholar
  16. 16.
    Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.PubMedCrossRefGoogle Scholar
  17. 17.
    Eng, J. K., McCormack, A. L., Yates, J. R. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989.CrossRefGoogle Scholar
  18. 18.
    Craig, R., Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467.PubMedCrossRefGoogle Scholar
  19. 19.
    Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., et al. (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectro­metry. Rapid Commun. Mass Spectrom. 17, 2337–2342.PubMedCrossRefGoogle Scholar
  20. 20.
    Colinge, J., Masselot, A., Cusin, I., Mahe, E., Niknejad, A., Argoud-Puy, G., et al. (2004) High-performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics. Proteomics 4, 1977–1984.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Fang Xie
  • Elena V. Romanova
  • Jonathan V. Sweedler
    • 1
    Email author
  1. 1.Department of Chemistry and the Beckman InstituteUniversity of IllinoisUrbanaUSA

Personalised recommendations