Advertisement

Studying Collagen Self-Assembly by Time-Lapse High-Resolution Atomic Force Microscopy

  • Clemens M. Franz
  • Daniel J. Muller
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 736)

Abstract

Fibrillar collagens constitute a main component of many tissues, where they form a scaffold for cell attachment and provide mechanical strength. Gaining insight into molecular mechanisms of collagen self-assembly from in vitro experiments is important for better understanding the complex hierarchical processes involved in collagen fibril formation in vivo. In addition, such insight can be used to assemble collagen into desirable structures for the biofunctionalization of surfaces in different biotechnological and medical applications. Here, we describe a method to direct the assembly of type I collagen into well-defined nanoscopic matrices of different patterns. Within these matrices, the self-assembly of collagen molecules into fibrils can be directly observed by time-lapse atomic force microscopy (AFM). High-resolution AFM topographs reveal substructural details of the collagen fibril architecture and provide information about mechanisms and dynamics of fibril formation.

Key words

Collagen Self-assembly Atomic force microscopy (AFM) Biofunctionalization Fibrillogenesis Topography 

Notes

Acknowledgments

We thank Dr. David Cisneros and Dr. Fengzhi Jiang for providing AFM images and Dr. Pierre-Henri Puech for helpful comments.

References

  1. 1.
    Jiang, F., Khairy, K., Poole, K., Howard, J. & Muller, D. J. (2004) Creating nanoscopic collagen matrices using atomic force microscopy. Microsc Res Tech 64, 435–40.Google Scholar
  2. 2.
    Cisneros, D. A., Friedrichs, J., Taubenberger, A., Franz, C. M. & Muller, D. J. (2007) Creating ultrathin nanoscopic collagen matrices for biological and biotechnological applications. Small 3, 956–63.Google Scholar
  3. 3.
    Jiang, F., Horber, H., Howard, J. & Muller, D. J. (2004) Assembly of collagen into microribbons: effects of pH and electrolytes. J Struct Biol 148, 268–78.Google Scholar
  4. 4.
    Ludwig, T., Kirmse, R., Poole, K. & Schwarz, U. S. (2008) Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Arch 456, 29–49.Google Scholar
  5. 5.
    Franz, C. M. & Puech, P. H. (2008) Atomic force microscopy - a versatile tool for studying cell morphology, adhesion and mechanics. Cell Mol Bioeng 1, 289–300.Google Scholar
  6. 6.
    Cisneros, D. A., Hung, C., Franz, C. M. & Muller, D. J. (2006) Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J Struct Biol 154, 232–45.Google Scholar
  7. 7.
    Friedrichs, J., Manninen, A., Muller, D. J. & Helenius, J. (2008) Galectin-3 regulates ­integrin alpha2beta1-mediated adhesion to collagen-I and -IV. J Biol Chem 283, 32264–72.Google Scholar
  8. 8.
    Friedrichs, J., Torkko, J. M., Helenius, J., Teravainen, T. P., Fullekrug, J., Muller, D. J., Simons, K. & Manninen, A. (2007) Contributions of galectin-3 and -9 to epithelial cell adhesion analyzed by single cell force spectroscopy. J Biol Chem 282, 29375–83.Google Scholar
  9. 9.
    Taubenberger, A., Cisneros, D. A., Friedrichs, J., Puech, P. H., Muller, D. J. & Franz, C. M. (2007) Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18, 1634–44.Google Scholar
  10. 10.
    Franz, C. M., Taubenberger, A., Puech, P. H. & Muller, D. J. (2007) Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy. Sci STKE 2007, pl5.Google Scholar
  11. 11.
    Poole, K., Khairy, K., Friedrichs, J., Franz, C., Cisneros, D. A., Howard, J. & Mueller, D. (2005) Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces. J Mol Biol 349, 380–6.Google Scholar
  12. 12.
    Friedrichs, J., Taubenberger, A., Franz, C. M. & Muller, D. J. (2007) Cellular remodelling of individual collagen fibrils visualized by time-lapse AFM. J Mol Biol 372, 594–607.Google Scholar
  13. 13.
    Hattori, S., Adachi, E., Ebihara, T., Shirai, T., Someki, I. & Irie, S. (1999) Alkali-treated collagen retained the triple helical conformation and the ligand activity for the cell adhesion via alpha2beta1 integrin. J Biochem 125, 676–84.Google Scholar
  14. 14.
    Muller, D. J., Amrein, M. & Engel, A. (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119, 172–88.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.DFG-Center for Functional Nanostructures, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations