Advertisement

Atomic Force Microscopy as Nanorobot

  • Ning XiEmail author
  • Carmen Kar Man Fung
  • Ruiguo Yang
  • King Wai Chiu Lai
  • Donna H. Wang
  • Kristina Seiffert-Sinha
  • Animesh A. Sinha
  • Guangyong Li
  • Lianqing Liu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 736)

Abstract

Atomic force microscopy (AFM) is a powerful and widely used imaging technique that can visualize single molecules under physiological condition at the nanometer scale. In this chapter, an AFM-based nanorobot for biological studies is introduced. Using the AFM tip as an end effector, the AFM can be modified into a nanorobot that can manipulate biological objects at the single-molecule level. By functionalizing the AFM tip with specific antibodies, the nanorobot is able to identify specific types of receptors on the cell membrane. It is similar to the fluorescent optical microscopy but with higher resolution. By locally updating the AFM image based on interaction force information and objects’ model during nanomanipulation, real-time visual feedback is obtained through the augmented reality interface. The development of the AFM-based nanorobotic system enables us to conduct in situ imaging, sensing, and manipulation simultaneously at the nanometer scale (e.g., protein and DNA levels). The AFM-based nanorobotic system offers several advantages and capabilities for studying structure–function relationships of biological specimens. As a result, many biomedical applications can be achieved by the AFM-based nanorobotic system.

Key words

AFM Augmented reality Nanomaniplation Nanorobot Single-molecule recognition 

Notes

Acknowledgments

This research work is partially supported by NSF Grants IIS-0713346 and DMI-0500372, and ONR Grants N00014-04-1-0799 and N00014-07-1-0935.

References

  1. 1.
    Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscope. Phys Rev Lett. 56, 930–933.PubMedCrossRefGoogle Scholar
  2. 2.
    Engel, A., and Müller, D.J. (2000) Observing single biomolecules at work with the atomic force microscope. Nature Structural Biology. 7(9), 715–718.PubMedCrossRefGoogle Scholar
  3. 3.
    Hörber, J.K.H., and Miles, M.J. (2003) Scanning probe evolution in biology. Science 302, 1002-1005.Google Scholar
  4. 4.
    Dufrêne, Y.F. (2004) Using nanotechniques to explore microbial surfaces. Nature Reviews Microbiology 2, 451–460.PubMedCrossRefGoogle Scholar
  5. 5.
    Schaefer, D.M., Reifenberger, R., Patil, A., and Andres, R.P. (1995) Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope. Appl. Phys. Lett. 66, 1012–1014.CrossRefGoogle Scholar
  6. 6.
    Junno, T., Deppert, K., Montelius, L., and Samuelson, L. (1995) Controlled manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett., 66(26), 3627–3629.CrossRefGoogle Scholar
  7. 7.
    Hansma, H.G. (1992) Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256, 1180–1184.PubMedCrossRefGoogle Scholar
  8. 8.
    Vesenka, J., Guthold, M., Tang, C.L., Keller, D., Delaine, E., and Bustamante, C. (1992) Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42–44, 1243–1249.PubMedCrossRefGoogle Scholar
  9. 9.
    Thalhammer, S., Stark, R.W., Müller, S., Wienberg, J., and Heckl, W.M. (1997) The atomic force microscope as a new microdissecting­ tool for the generation of genetic probes. J Struct Biol 119, 232–237.PubMedCrossRefGoogle Scholar
  10. 10.
    Toshiya, O., Hironori, U., Hyonchol, K., and Atsushi, I. (2003) mRNA analysis of single living cells. J Nanobiotech. 1, 2.CrossRefGoogle Scholar
  11. 11.
    Sagvolden, G., Giaever, I., Pettersen, E.O., and Feder. (1999) J Cell adhesion force microscopy. Proc Natl Acad Sci USA 96, 471–476.Google Scholar
  12. 12.
    Charras, G., and Horton, M. (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J. 82, 2970–2981.PubMedCrossRefGoogle Scholar
  13. 13.
    Oesterhelt, F. (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146.PubMedCrossRefGoogle Scholar
  14. 14.
    Viani, M.B., Pietrasanta, L.I., Thompson, J.B., Chand, A., Gebeshuber, I.C., Kindt, J.H., Richter, M., Hansma, H.G., and Hansma, P.K. (2000) Probing protein–­protein interactions in real time. Nat Struct Biol. 7, 644–647.PubMedCrossRefGoogle Scholar
  15. 15.
    Bustamante, C., Macosko, J., and Wuite, G. (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol. 1, 130–136.PubMedCrossRefGoogle Scholar
  16. 16.
    Hansen, L.T., Kuhle, A., Sorensen, A.H., Bohr, J., and Lindelof, P.E. (1998) A technique for positioning nanoparticles using an atomic force microscope. Nanotechnology 9,337–342.CrossRefGoogle Scholar
  17. 17.
    Resch, R., Baur, C., Bugacov, A., Koel, B.E., Madhukar, A., Requicha, A.A.G., and Will, P. (1998) Building and manipulating three- dimensional and linked two-­dimensional structures of nanoparticles using scanning force microscopy. Langmuir 14(23), 6613–6616.CrossRefGoogle Scholar
  18. 18.
    Sitti, M., and Hashimoto, H. (1998) ­Tele-nanorobotics using atomic force microscope. Proc. IEEE Int. Conf. Intelligent Robots and Systems 1739–1746.Google Scholar
  19. 19.
    Guthold, M., Falvo, M.R., Matthews, W.G., Washburn, S.S., Paulson, and Erie, D.A. (2000) Controlled manipulation of molecular samples with the nanomanipulator. IEEE/ASME Trans. on Mechatronics 5(2), 189–198.Google Scholar
  20. 20.
    Putman, C.A.J., van der Werf, K.O., de Grooth, B.G., van Hulst, N.F., and Greve, J. (1994) Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys. J. 67, 1749–1753.PubMedCrossRefGoogle Scholar
  21. 21.
    Prater, C.B., Wilson, M.R., Garnaes, J., Massie, J., Eling, V.B., and Hasma, P.K. (1991) Atomic force microscopy of biological samples at low temperature. J. Vac Sci. Tech. B. 9, 989–991.CrossRefGoogle Scholar
  22. 22.
    Butt, H.J., Wolff, E.K., Gould, S.A.C., Northern, B.D., Peterson, C.M., and Hansma, P.K. (1990) Atomic force microscopy of biological samples at low temperature. J. Struct. Biol. 105, 54–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Hansma, P.K., Cleveland, J.P., Radmacher, M., Walters, D.A., Hillner, P.E., Bezanilla, M., Fritz, M., Vie, D., and Hansma, H.G. (1994) Tapping mode atomic force microscopy in ­liquids. Appl. Phys. Lett. 64, 1738–1740.CrossRefGoogle Scholar
  24. 24.
    Baker, A.A., Helbert, W., Sugiyama, J., and Miles, M.J. (2000) New insight into cellulose structure by atomic force microscopy shows the iα crystal phase at near-atomic resolution. Biophys. J. 79, 1139–1145.PubMedCrossRefGoogle Scholar
  25. 25.
    Fotiadis, D., Scheuring, S., Müller, S.A., Engel, A., and Müller, D.J. (2002) Imaging and manipulation of biological structures with the AFM. Micron 33, 385–397.PubMedCrossRefGoogle Scholar
  26. 26.
    Willemsen, O.H., Snel, M.M.E., van der Werf, K.O., de Grooth, B.G., Greve, J., Hinterdorfer, P., Gruber, H.J., Schindler, H., van Kooyk, Y., and Figdor, C.G. (1998) Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophys. J. 75, 2220–2228.PubMedCrossRefGoogle Scholar
  27. 27.
    Ludwig, M., Dettmann, W., and Gaub, H.E. (1997) Afm imaging contrast based on molecular recognition. Biophys. J. 72, 445–448.PubMedCrossRefGoogle Scholar
  28. 28.
    Raab, A., Han, W., Badt, D., Smith-Gill, S.J., Lindsay, S.M., Schindler, H., and Hinterdorfer, P. (1999) Antibody recognition imaging by force microscopy. Nat. Biotechnol. 17, 902–905.Google Scholar
  29. 29.
    Chen, H., Xi, N., and Li, G. (2006) CAD-guided automated nanoassembly using atomic force microscopy-based nanorobotics. IEEE Transactions on Automation Science and Engineering 3(3), 208–217.CrossRefGoogle Scholar
  30. 30.
    Li, G., Xi, N., Yu, M., and Fung, W. K. (2003) Augmented reality system for real-time ­nanomanipulations. Proc. IEEE Int. Conf. Nanotechnology 2, 64–67.Google Scholar
  31. 31.
    Li, G., Xi, N., and Yu, M. (2004) Development of augmented reality system for afm based nanomanipulations. IEEE/ASME Trans. on Mechatronics 9, 358–365.CrossRefGoogle Scholar
  32. 32.
    Zhang, J., Xi, N., Liu, Li., Chen, H., Lai, K. W. C., and Li, G. (2008) Atomic force yields a master nanomanipulator. IEEE Nano­technology Magazine 2(2), 13–17.CrossRefGoogle Scholar
  33. 33.
    Li, G., Xi, N., Chen, H., Pomeroy, C., and Prokos, M. (2005) “Videolized” atomic force microscopy for interactive nanomanipulation and Nanoassembly. IEEE Transactions on Nanotechnology 4, 605–615.CrossRefGoogle Scholar
  34. 34.
    Liu, L., Luo, Y., Xi, N., Wang, Y., Zhang, J., and Li, G. (2008) Sensor referenced real-time videolization of atomic force microscopy for nanomanipulations. IEEE/ASME Transactions on Mechatronics 13(1), 76–85.CrossRefGoogle Scholar
  35. 35.
    Li, G., Xi, N., Wang, Y.C., Yu, M., and Fung, W.K. (2004) Planning and control of 3-D nano-Manipulation. Acta Mechanica Sinica. 20(2), 117–124.CrossRefGoogle Scholar
  36. 36.
    Li, G., Xi, N., and Yu, M. (2004) Augmented Reality Enhanced “Top-Down” nanomanufacturing. Proc. of IEEE Conference on Nanotechnology 352–354.Google Scholar
  37. 37.
    Li, G., Xi, N., and Yu, M. (2004) Calibration of AFM based nanomanipulation system. Proc. of IEEE International Conference on Robotics and Automation 422–427.Google Scholar
  38. 38.
    Li, G., Xi, N., Chen, H., Saeed, A., and Yu, M. (2004) Assembly of nanostructure using AFM based nanomanipulation system. Proc. of IEEE International Conference on Robotics and Automation 428–433.Google Scholar
  39. 39.
    Zhang, J., Xi, N., Li, G., Chan, H., and Wejinya, U.C. (2006) Adaptable end effector for atomic force microscopy based nanomanipulation. IEEE Transactions on Nano­technology 5(6), 628–642.CrossRefGoogle Scholar
  40. 40.
    Li, G., Xi, N., Chen, H., Saeed, A., Li, W.J., Fung, C.K.M., Chan, R.H.M., Zhang, M., and Tarn, T.J. (2004) Nano-assembly of DNA based electronic devices using atomic force microscopy. Proc. of IEEE/RSJ International Conference on Intelligent Robotics and Systems 583–588.Google Scholar
  41. 41.
    Li, G., Xi, N., Chen, H.P., Saeed, A., Zhang, J., Li, W.J., Fung, C.K.M., Chan, R.H.M., Zhang, M., and Tarn, T.J. (2004) Experimental studies of DNA electrical properties using AFM based nano-manipulator. Proc. of IEEE Conference on Nanotechnology 308–310.Google Scholar
  42. 42.
    Li, G., Xi, N., and Wang, D.H. (2005) Investigation of angiotensin II type 1 receptor by atomic force microscopy with functionalized probe. Nanomedicine: Nanotechnology, Biology, and Medicine 1(4), 302–312.CrossRefGoogle Scholar
  43. 43.
    Li, G., Xi, N., and Wang, D.H. (2006) Probing membrane proteins using atomic force microscopy. J. Cellular Biochem. 97, 1191–1197.CrossRefGoogle Scholar
  44. 44.
    Li, G., Xi, N., and Wang, D.H. (2005) In situ sensing and manipulation of molecules in biological samples using a nanorobotic system. Nanomedicine: Nanotechnology, Biology, and Medicine 1(1), 31–40.CrossRefGoogle Scholar
  45. 45.
    Fung, C.K.M., Kristina, S., Lai, K.W.C., Yang, R., Panyard, D., Zhang, J., Xi, N., and Sinha, A. A. (2010) Investigation of human keratinocyte cell adhesion using atomic force microscopy (AFM). Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1), 191–200.Google Scholar
  46. 46.
    Zhang, J., Xi, N., and Lai, K. W. C. (2007) Fabrication and testing of a nanoinfrared detector using a single carbon nanotube (CNT). SPIE Newsroom. (online at: http://spie.org/x8489.xml).
  47. 47.
    Zhang, J., Xi, N., Chen, H. Z., Lai, K. W. C., and Li, G. (2008) Photovoltaic effect in single carbon nanotube based Schottky diodes. International Journal of Nanoparticles 1(2), 108–118.CrossRefGoogle Scholar
  48. 48.
    Zhang, J., Xi, N., Chen, H. Z., Lai, K. W. C., and Li, G. (2009) Design, manufacturing and testing of single carbon nanotube based infrared sensors. IEEE Transactions on Nanotechnology 8(2), 245–251.CrossRefGoogle Scholar
  49. 49.
    Chen, H. Z., Xi, N., Lai, K. W. C., and Zhang, J. (2008) Infrared detection using carbon nanotube field effect transistor. Proc. of IEEE Conference on Nanotechnology 88–91.Google Scholar
  50. 50.
    Fung, C. K. M., Xi, N., Shanker, B., and Lai, K. W. C. (2009) Nanoresonant signal booster for carbon nanotube based infrared detectors. Nanotechnology 20, 185201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ning Xi
    • 1
    Email author
  • Carmen Kar Man Fung
  • Ruiguo Yang
  • King Wai Chiu Lai
  • Donna H. Wang
  • Kristina Seiffert-Sinha
  • Animesh A. Sinha
  • Guangyong Li
  • Lianqing Liu
  1. 1.Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations