Advertisement

High-Speed Atomic Force Microscopy and Biomolecular Processes

  • Takayuki Uchihashi
  • Toshio AndoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 736)

Abstract

Atomic force microscope (AFM) is unique in its capability to capture high-resolution images of biological samples in liquids. This capability will become more versatile to biological sciences if AFM additionally acquires an ability of high-speed imaging, because “direct and real-time visualization” is a straightforward and powerful means to understand biomolecular processes. However, the imaging speed of conventional AFM is too slow to capture moving protein molecules at high resolution. In order to fill this large gap, various efforts have been carried out in the past decade. In this chapter, the past efforts for increasing the scan rate and reduction of tip–sample interaction force of AFM and demonstration of direct visualization of biomolecular processes are described.

Key words

AFM Protein Bio-imaging Dynamics High-speed AFM 

Notes

Acknowledgments

We thank N. Kodera, D. Yamamoto, M. Shibata, A. Miyagi, M. Taniguchi, H. Yamashita, and all previous students for their dedicated studies for developing high-speed AFM. This work was supported by the Japan Science and Technology Agency (JST; the CREST program and a Grant-in-Aid for Development of Systems, Technology for Advanced Measurement and Analysis) and the Japan Society for the Promotion of Science (JSPS; a Grant-in-Aid for Basic Research (S)).

References

  1. 1.
    Müller, D. J., Fotiadis, D., Scheuring, S., Müller, S. A., and Engel, A. (1999) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 76, 1101–1111.PubMedCrossRefGoogle Scholar
  2. 2.
    Ando, T., Uchihashi, T., and Fukuma, T. (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 83, 337–437.CrossRefGoogle Scholar
  3. 3.
    Ando, T., Uchihashi, T., Kodera, N., Yamamoto, D., Miyagi, A., Taniguchi, M., and Yamashita, H. (2008) High-speed AFM for nano-visualization of biomolecular processes. Pflugers Arch. – Eur. J. Physiol. 456, 221–225.Google Scholar
  4. 4.
    Yamamoto, D., Uchihashi, T., Kodera, N., Yamashita, H., Nishikori, S., Ogura, T., Shibata, M., and Ando, T. (in press) High-speed Atomic Force Microscopy Techniques for Observing Dynamic Biomolecular Processes. Methods in Enzymology Google Scholar
  5. 5.
    Ando, T., Uchihashi, T., Kodera N., Miyagi, A., Nakakita R., Yamashita H., and Sakashita M. (2006) High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work. Jpn J Appl Phys 45, 1897–1903.CrossRefGoogle Scholar
  6. 6.
    Yamashita, H., Kodera, N., Miyagi, A., Uchihashi, T., Yamamoto, D., and Ando, T. (2007) Tip-sample distance control using photo-thermal actuation of a small cantilever for high-speed atomic force microscopy. Rev Sci Instrum. 78, 083702 (5 pp)Google Scholar
  7. 7.
    Miyagi, A., Tsunaka, T., Uchihashi, T., Mayanagi, K., Hirose, S., Morikawa, K., and Ando, T. (2008) Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chem. Phys. Chem. 9, 1859–1866.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamamoto, D., Uchihashi, T., Kodera, N., and Ando, T. (2008) Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology 19, 384009 (9 pp).Google Scholar
  9. 9.
    Yamashita, H., Voïtchovsky, K., Uchihashi, T., Contera, S. A., Ryan, J. F., and Ando, T. (2009) Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J. Struct. Biol. 167, 153–158.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhong, Q., Inniss, D., Kjoller, K., and Elings, V. B. (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692.CrossRefGoogle Scholar
  11. 11.
    Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., et al. (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740.CrossRefGoogle Scholar
  12. 12.
    Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., and Toda, A. (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. USA 98, 12468–12472.PubMedCrossRefGoogle Scholar
  13. 13.
    Kitazawa, M., Shiotani, K., and Toda, A. (2003). Batch fabrication of sharpened silicon nitride tips. Jpn. J. Appl. Phys. 42, 4844  –  4847.CrossRefGoogle Scholar
  14. 14.
    Kodera, N., Yamashita, H., Ando, T. (2005) Active damping of the scanner for high-speed atomic force microscopy. Rev Sci Instrum. 76, 053708, (5 pp).Google Scholar
  15. 15.
    Schitter, G., and Stemmer, A. (2004) Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy. IEEE Trans Control Systems Technol. 12, 449–454.CrossRefGoogle Scholar
  16. 16.
    Zou, Q., Leang, K. K., Sadoun, E., Reed, M. J., and Devasia, S. (2004) Control issues in high-speed AFM for biological applications: collagen imaging example. Asian J Control 6, 164–178.PubMedCrossRefGoogle Scholar
  17. 17.
    Morita, S., Yamada, H., and Ando, T. (2007) Japan AFM roadmap 2006. Nanotechnol 18, 084001 (10 pp).Google Scholar
  18. 18.
    Kodera, N., Sakashita, M., and Ando, T. (2006) Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev Sci Instrum. 77, 083704, (7 pp).Google Scholar
  19. 19.
    Stark, M., and Guckenberger, R. (1999) Fast low-cost phase detection setup for tapping-mode atomic force microscopy. Rev Sci Instrum. 70, 3614–3619.CrossRefGoogle Scholar
  20. 20.
    Uchihashi, T., Ando, T., Yamashita, H. (2006) Fast phase imaging in liquids using a rapid scan atomic force microscope. Appl. Phys. Lett. 89, 213112, (3 pp).Google Scholar
  21. 21.
    Yamaoto, D., Nagura, N., Omote, S., Taniguchi, M., and Ando, T., (in press) Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy. Biophys. J. 97.Google Scholar
  22. 22.
    Zhang, S. F., Rolfe, P., Wright, G., Lian, W., Milling, A. J., Tanaka, S., and Ishihara, K. (1998). Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group. Biomater. 19, 691–700.CrossRefGoogle Scholar
  23. 23.
    Vadgama, P. (2005). Surface biocompatibility. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 101, 14–52.CrossRefGoogle Scholar
  24. 24.
    Nakajima, H., Kunioka, K., Nakano, K., Shimizu, M., Seto, M., and Ando, T. (1997). Scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin. Biochem. Biophys. Res. Commun. 234, 178–182.PubMedCrossRefGoogle Scholar
  25. 25.
    Schmidt, J. J., and Montemagno, C. D. (2004). Bionanomechanical systems, Annu. Rev. Mater. Res. 34, 315–337.CrossRefGoogle Scholar
  26. 26.
    Ando, T., Kodera, N., Maruyama, D., Takai, E., Saito, K., and Toda, A. (2002). A high-speed atomic force microscope for studying biological macromolecules in action, Jpn. J. Appl. Phys. 41, 4851–4856.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsKanazawa UniversityKanazawaJapan
  2. 2.CREST, JSTTokyoJapan

Personalised recommendations