Micromethods for Lipid A Isolation and Structural Characterization

  • Martine Caroff
  • Alexey Novikov
Part of the Methods in Molecular Biology book series (MIMB, volume 739)


Lipopolysaccharides (LPSs) are major components of the external membrane of Gram-negative bacteria, and act as an effective permeability barrier. They are essentially composed of a hydrophilic polysaccharide region linked to an hydrophobic one, termed lipid A. Depending on their individual variable fine structures, they may be potent immunomodulators. Because of the structural importance and role of lipid A in bacterial pathogenesis, herein we describe two rapid practical micromethods for structural analysis. The first method allows the direct isolation of lipid A from whole bacteria cell mass; the second describes conditions for the sequential release of fatty acids, enabling the determination of their substitution position in the lipid A structure to be determined by matrix-assisted laser desorption/ionization mass spectrometry. Examples are given with reference to two major pathogens: Bordetella pertussis and Pseudomonas aeruginosa.

Key words

Gas chromatography 3-Deoxy-d-manno-oct-2-ulosonic acid Lipooligosaccharide Lipopolysaccharide Matrix-assisted laser desorption/ionization mass spectrometry Tumor necrosis factor Sodium dodecyl sulfate 



Alexey Novikov is a recipient of a young researcher fellowship from INSERM (France). Part of this work was supported by the CNRS Group of Research GDR3048. This chapter is dedicated to Dr. Malcolm B. Perry (Ottawa, Canada) on his 80th birthday.


  1. 1.
    Caroff MG, Karibian D (1990) Several uses for isobutyric acid-ammonium hydroxide solvent in endotoxin analysis. Appl Environ Microbiol 56:1957–1959PubMedGoogle Scholar
  2. 2.
    Caroff M, Brisson J, Martin A, Karibian D (2000) Structure of the Bordetella pertussis 1414 endotoxin. FEBS Lett 477:8–14PubMedCrossRefGoogle Scholar
  3. 3.
    Ciornei CD, Novikov A, Beloin C, Fitting C, Caroff M, Ghigo JM, Cavaillon JM, Adib-Conquy M (2010) Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immun 16(5):288–301PubMedCrossRefGoogle Scholar
  4. 4.
    El Hamidi A, Tirsoaga A, Novikov A, Hussein A, Caroff M (2005) Microextraction of bacterial lipid A: easy and rapid method for mass spectrometric characterization. J Lipid Res 46:1773–1778PubMedCrossRefGoogle Scholar
  5. 5.
    Aussel L, Therisod H, Karibian D, Perry MB, Bruneteau M, Caroff M (2000) Novel variation of lipid A structures in strains of different Yersinia species. FEBS Lett 465:87–92PubMedCrossRefGoogle Scholar
  6. 6.
    Tirsoaga A, El Hamidi A, Perry MB, Caroff M, Novikov A (2007) A rapid, small-scale procedure for the structural characterization of lipid A applied to Citrobacter and Bordetella strains: discovery of a new structural element. J Lipid Res 48:2419–2427PubMedCrossRefGoogle Scholar
  7. 7.
    Caroff M, Deprun C, Richards JC, Karibian D (1994) Structural characterization of the lipid A of Bordetella pertussis 1414 endotoxin. J Bacteriol 176:5156–5159PubMedGoogle Scholar
  8. 8.
    Marr N, Tirsoaga A, Blanot D, Fernandez R, Caroff M (2008) Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of a BvgAS-activated ArnT ortholog. J Bacteriol 190:4281–4290PubMedCrossRefGoogle Scholar
  9. 9.
    Karibian D, Brunelle A, Aussel L, Caroff M (1999) 252Cf-plasma desorption mass spectrometry of unmodified lipid A: fragmentation patterns and localization of fatty acids. Rapid Commun Mass Spectrom 13:2252–2259PubMedCrossRefGoogle Scholar
  10. 10.
    Therisod H, Labas V, Caroff M (2001) Direct microextraction and analysis of rough-type lipopolysaccharides by combined thin-layer chromatography and MALDI mass spectrometry. Anal Chem 73:3804–3807PubMedCrossRefGoogle Scholar
  11. 11.
    Rosner MR, Tang J, Barzilay I, Khorana HG (1979) Structure of the lipopolysaccharide from an Escherichia coli heptose-less mutant. I. Chemical degradations and identification of products. J Biol Chem 254:5906–5917PubMedGoogle Scholar
  12. 12.
    Caroff M, Tacken A, Szabo L (1988) Detergent-accelerated hydrolysis of bacterial endotoxins and determination of the anomeric configuration of the glycosyl phosphate present in the “isolated lipid A” fragment of the Bordetella pertussis endotoxin. Carbohydr Res 175:273–282PubMedCrossRefGoogle Scholar
  13. 13.
    Caroff M, Karibian D (2003) Structure of bacterial lipopolysaccharides. Carbohydr Res 338:2431–2447PubMedCrossRefGoogle Scholar
  14. 14.
    Caroff M, Karibian D, Cavaillon JM, Haeffner-Cavaillon N (2002) Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect 4:915–926PubMedCrossRefGoogle Scholar
  15. 15.
    Bedoux G, Vallee-Rehel K, Kooistra O, Zähringer U, Haras D (2004) Lipid A components from Pseudomonas aeruginosa PAO1 (serotype O5) and mutant strains investigated by electrospray ionization ion-trap mass spectrometry. J Mass Spectrom 39:505–513PubMedCrossRefGoogle Scholar
  16. 16.
    Caroff M, Lebbar S, Szabo L (1987) Do endotoxins devoid of 3-deoxy-d-manno-2-octulosonic acid exist? Biochem Biophys Res Commun 143:845–847PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Equipe “Structure et Activités des Endotoxines”, Institut de Génétique et MicrobiologieUniversité de Paris Sud-XIOrsayFrance

Personalised recommendations