Telomeres and Telomerase pp 97-106

Part of the Methods in Molecular Biology book series (MIMB, volume 735)

Analysis of Yeast Telomerase by Primer Extension Assays

Protocol

Abstract

Telomeres are specialized nucleoprotein structures located at eukaryotic chromosomal termini, which are required for chromosome stability and are maintained by a reverse transcriptase named telomerase. Budding yeast has served as an extremely useful model system for analyzing telomere maintenance because the organism offers a wide range of genetic and biochemical tools. Several milestones in telomerase research were reached through investigation of the yeast system. For example, the consequence of telomerase loss was first characterized in the budding yeast Saccharomyces cerevisiae (Lundblad and Szostak, Cell 57:633–643, 1989). The catalytic component of telomerase (telomerase reverse transcriptase; TERT) was likewise initially cloned from this organism (Lendvay et al., Genetics 144:1399–1412, 1996). Moreover, much of the current understanding of the structure and function of the telomerase complex was derived from yeast studies (Autexier and Lue, Annu Rev Biochem 75:493–517, 2006). In this chapter, we discuss one of the most useful tools for investigating yeast telomerase mechanisms and regulation: the primer extension assay. This assay can be used to examine the overall activity as well as the processivity of telomerase, which represents a unique aspect of telomerase enzymology (Lue et al., Mol Cell Biol 23:8440–8449, 2003; Bosoy and Lue, Nucleic Acids Res 32:93–101, 2004). It can also be employed to analyze the mechanisms of telomerase regulatory proteins (Zappulla et al., Nucleic Acids Res 37:354–367, 2009; DeZwaan and Freeman, Proc Natl Acad Sci USA 106, 17337–17342, 2009).

Key words

Telomerase DEAE chromatography IgG-Sepharose pull down Primer extension assay TRAP assay 

References

  1. 1.
    Autexier, C. and Lue, N. F. (2006) The structure and function of telomerase reverse transcriptase. Annu. Rev. Biochem. 75, 493–517.PubMedCrossRefGoogle Scholar
  2. 2.
    Collins, K. (2006) The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell. Biol. 7, 484–494.PubMedCrossRefGoogle Scholar
  3. 3.
    Greider, C. W. and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 43, 405–413.PubMedCrossRefGoogle Scholar
  4. 4.
    Greider, C. W. and Blackburn, E. H. (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature. 337, 331–337.PubMedCrossRefGoogle Scholar
  5. 5.
    Cohn, M. and Blackburn, E. H. (1995) Telomerase in yeast. Science. 269, 396–400.PubMedCrossRefGoogle Scholar
  6. 6.
    Morin, G. (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 59, 521–529.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., Coviello, G. M., Wright, W. E., Weinrich, S. L., and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015.PubMedCrossRefGoogle Scholar
  8. 8.
    Prescott, J. and Blackburn, E. H. (1997) Telomerase RNA mutations in Saccharomyces cerevisiae alter telomerase action and reveal nonprocessivity in vivo and in vitro. Genes Dev. 11, 528–540.PubMedCrossRefGoogle Scholar
  9. 9.
    Teixera, M. T. and Gilson, E. (2005) Telomere maintenance, function and evolution: the yeast paradigm. Chromosome Res. 13, 535–548.CrossRefGoogle Scholar
  10. 10.
    Mozdy, A. D. and Cech, T. R. (2006) Low abundance of telomerase in yeast: implications for telomerase haploinsufficiency. RNA 12, 1721–1737.PubMedCrossRefGoogle Scholar
  11. 11.
    Lue, N. F. and Peng, Y. (1997) Identification and characterization of a telomerase activity from Schizosaccharomyces pombe. Nucleic Acids Res. 25, 4331–4337.PubMedCrossRefGoogle Scholar
  12. 12.
    Friedman, K. L. and Cech T. R. (1999) Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev. 13, 2863–2874.PubMedCrossRefGoogle Scholar
  13. 13.
    Xia, J., Peng, Y., Mian, I. S., and Lue, N. F. (2000) Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol. Cell. Biol. 20, 5196–5207.PubMedCrossRefGoogle Scholar
  14. 14.
    Fulton, T. B. and Blackburn, E. H. (1998) Identification of Kluyveromyces lactis telomerase: discontinuous synthesis along the 30-nucleotide-long templating domain. Mol. Cell. Biol. 18, 4961–4970.PubMedGoogle Scholar
  15. 15.
    Singh, S., Steinberg-Neifach, O., Mian, I., and Lue, N. (2002) Analysis of telomerase in Candida albicans: potential role in telomere end protection. Euk. Cell. 1, 967–977.CrossRefGoogle Scholar
  16. 16.
    Hsu, M., Yu, E. Y., Singh, S. M., and Lue, N. F. (2007) Mutual dependence of Candida albicans Est1p and Est3p in telomerase assembly and activation. Euk. Cell. 6, 1330–1338.CrossRefGoogle Scholar
  17. 17.
    Haering, C. H., Nakamura, T. M., Baumann, P., and Cech, T. R. (2000) Analysis of telomerase catalytic subunit mutants in vivo and in vitro in Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 97, 6367–6372.PubMedCrossRefGoogle Scholar
  18. 18.
    Gunisova, S., Elboher, E., Nosek, J., Gorkovoy, V., Brown, Y., Lucier, J.F., Laterreur, N., Wellinger, R.J., Tzfati, Y., and Tomaska, L. (2009) Identification and ­comparative analysis of telomerase RNAs from Candida species revel conservation of ­functional elements. RNA 15, 546–559.PubMedCrossRefGoogle Scholar
  19. 19.
    Toogun, O.A., Zeiger, W., and Freeman, B.C. (2007) The p23 molecular chaperone promotes functional telomerase complexes through DNA dissociation. Proc. Natl. Acad. Sci. USA 104, 5765–5770.PubMedCrossRefGoogle Scholar
  20. 20.
    Bryan, T.M., Goodrich, K.J., and Cech, T.R. (2000). A Mutant of Tetrahymena Telomerase Reverse Transcriptase with Increased Processivity. J. Biol. Chem. 275, 24199–24207.Google Scholar
  21. 21.
    Peng, Y., Mian, I.S., and Lue, N.F. (2001). Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Molecular Cell. 7, 1201–1211.Google Scholar
  22. 22.
    Minnick, D.T., Astatke, M., Joyce, C.M., and Kunkel, T.A. (1996). A thumb subdomain mutant of the large fragment of Escherichia coli DNA polymerase I with reduced DNA binding affinity, processivity, and frameshift fidelity. J. Biol. Chem. 271, 24954–24961.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Microbiology & Immunology, W.R. Hearst Microbiology Research CenterWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations